
UNIVERSITY OF CALIFORNIA

Los Angeles

Named, Secured Data:

A Fundamental Building Block for Secure Networking

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Zhiyi Zhang

2021

© Copyright by

Zhiyi Zhang

2021

ABSTRACT OF THE DISSERTATION

Named, Secured Data:

A Fundamental Building Block for Secure Networking

by

Zhiyi Zhang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Lixia Zhang, Chair

Securing network communications is a major challenge facing the Internet today. Due

to the point-to-point communication model of TCP/IP architecture, at the time when se-

curity became a necessity, the channel-based security model, represented by Secure Sockets

Layer (SSL) and its successor Transport Layer Security (TLS), was applied to secure net-

work communication between hosts. However, designed for synchronous channels over the

network infrastructure, this security solution does not fit many emerging network scenarios

that require asynchronous communication. In addition, with the growth of content delivery

applications, the mismatch between what application needs, i.e., secured data, and what is

provided by the channel-based security model, i.e., secured channels, has also been observed

in recent years.

A newly proposed architecture, Named Data Networking (NDN), has been developed

over the past decade. Departing from TCP/IP’s network model, NDN considers named se-

cured data, instead of channels, as the building block of the communication, and provides

an alternative to today’s security model by securing data directly. Not relying on the net-

ii

work context, a piece of named secured data can be forwarded, cached, and reused without

breaking the security primitives. NDN also uses a stateful forwarding plane to deliver named

secured data at the network layer.

Under this background, there is an urge to understand the difference between the conven-

tional channel-based security model and the new data-centric security model, and explore

how to utilize the new way of doing network security to address today’s security issues. For

this purpose, we first revisit the key concepts of network security from the application’s

perspective and analyze the main features of the two security models. Then, we present our

design of a number of security solutions built over NDN’s named secured data, including (i) a

self-contained smart home control system, (ii) a DDoS mitigation mechanism that supports

fine-grained traffic throttling, (iii) a distributed ledger system for distributed rooftop solar

energy system, (iv) a multiparty signing and verification toolset, and (v) a secured data

prefetching system for vehicular networking.

We also describe two security solutions built on to the application level for (i) asyn-

chronous and privacy-preserving single sign-on (SSO) and (ii) reliable leaker identification

in sensitive data sharing, respectively. While not directly built over NDN because of today’s

deployment constraints, they follow the notion of the data-centric security model.

Through the design discussion of these systems, we confirm the unique advantages of

the data-centric security model and demonstrate how the new security model and especially,

NDN’s named secured data, can be applied to address some challenges that are intractable

to the channel-based security model.

iii

The dissertation of Zhiyi Zhang is approved.

Leonard Kleinrock

Songwu Lu

Peter Reiher

Alexander Afanasyev

Lixia Zhang, Committee Chair

University of California, Los Angeles

2021

iv

I dedicate my dissertation to Jiusong, my amazing wife, who has offered unwavering

support in the past five years of my doctorate journey. She encourages me when I am

upset, believes in me when I hesitate, and laughs with me when I make progress. Her love

and sacrificial care of me and Alan, our child, make it possible for me to finish this journey.

I also want to thank my mom and dad, who instilled in me the courage to think big and

pursue my dream when I was a child.

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 The Development of Network Security . 1

1.2 Two Ways of Providing Network Security . 2

1.3 Design Security Solutions with Named Secured Data 5

1.4 Bring Secured Data to Today’s Network Systems 7

1.5 Outline . 8

2 A Perspective of Network Security . 9

2.1 Network Security from Application’s Perspective 9

2.2 Channel-based Security . 11

2.3 Data-centric Security . 13

2.4 A Comparison . 16

2.5 Trust as a Central Piece of Network Security 18

3 Data-centric Security Support in NDN . 22

3.1 A Brief Introduction to NDN . 22

3.2 Security Support of NDN . 24

3.2.1 Data Availability . 25

3.2.2 Authentication and Data Authenticity 25

3.2.3 Named based Authorization . 26

3.2.4 Data Confidentiality and Access Control 27

3.2.5 Content and Name Privacy . 28

vi

4 Usable Security Solutions with Named Secured Data 30

4.1 Sovereign: NDN Based Smart Home System 30

4.1.1 Background and Motivation . 31

4.1.2 Design Overview . 32

4.1.3 Naming Conventions and Name-based Security Policies 35

4.1.4 Distributed End-to-end Security Enforcement 36

4.1.5 Integrating Sovereign Framework with Pub/Sub 38

4.1.6 Evaluation . 41

4.2 FITT: DDoS Mitigation with NDN . 45

4.2.1 Background and Motivation . 46

4.2.2 TCP/IP Architecture as the Root Cause of DDoS 47

4.2.3 DDoS in NDN . 48

4.2.4 Design of FITT . 49

4.2.5 Incremental Deployment . 51

4.2.6 Evaluation . 57

4.3 DLedger: Distributed Immutable Logging 63

4.3.1 Background and Motivation . 63

4.3.2 Design of DLedger . 64

4.3.3 Evaluation . 69

4.4 RapidVFetch: Secured Data Fetching in Vehicular Network 72

4.4.1 Background and Motivation . 72

4.4.2 Design of RapidVFetch . 74

4.4.3 Securing Vehicular Data Prefetching and Downloading 77

vii

4.4.4 Evaluation . 79

4.5 NDN-MPS: NDN Multiparty Trust Support 82

4.5.1 Background and Motivation . 83

4.5.2 A New Trust Model . 85

4.5.3 Design of NDN-MPS . 88

4.5.4 Multisignature Trust Schema . 90

4.5.5 Evaluation . 92

5 Build Usable Security Solutions using Data-centric Security 94

5.1 EL PASSO: Privacy-preserving Asynchronous Authentication 94

5.1.1 Background and Motivation . 94

5.1.2 Design of EL PASSO . 96

5.1.3 Evaluation . 100

5.2 ReLiShare: Data Sharing with Reliable Leaker Identification 101

5.2.1 Background and Motivation . 102

5.2.2 Design of ReLiShare . 104

5.2.3 Evaluation . 108

5.3 Moving Towards Data-centric Security . 108

6 Conclusion . 110

References . 113

viii

LIST OF FIGURES

1.1 TCP/IP and NDN network layering models . 3

2.1 Named secured data in NDN . 14

3.1 Three most important features of NDN . 22

3.2 Interest and Data packets in NDN . 23

3.3 Network packet forwarding in NDN . 24

3.4 Trust schema defines the expected data and key names 27

4.1 Two different models . 32

4.2 An overview of Sovereign . 33

4.3 Workflow beneath the pub/sub API . 39

4.4 Structure of Sovereign’s smart home SDK . 40

4.5 Code snippets in SmartThings and Sovereign 43

4.6 A comparison of user-perceived latency between Sovereign and AWS IoT 44

4.7 Breakdown of the execution time in Sovereign 45

4.8 An example topology of NDN Interest flooding attack 50

4.9 An overview of FITT system . 51

4.10 Incrementally deploy NDN and FITT over today’s CDN 53

4.11 A comparison between Squid CDN and FITT on top of NDN 56

4.12 NDN’s DDoS Resilience to Valid-S Interest Attack 58

4.13 FITT mitigation of invalid Interest attack . 59

4.14 FITT mitigation of valid Interest flooding . 60

ix

4.15 FITT mitigation in different attack scenarios . 60

4.16 FITT mitigation of mixed Interest flooding . 62

4.17 Endorsement ensures immutability in ReLiShare 67

4.18 DAG, endorsement, and consensus in DLedger 68

4.19 Unconfirmed record number and confirmation time in DLedger 70

4.20 Simulation of network partition in DLedger . 71

4.21 An example scenario of vehicular data prefetching 73

4.22 An overview of RapidVFetch . 76

4.23 Data-centric security in RapidVFetch . 79

4.24 The simulation topology for RapidVFetch evaluation 81

4.25 RapidVFetch performance in baseline and optimal scenarios 81

4.26 An example scenario of multiparty authentication 84

4.27 An overview of NDN-MPS . 88

4.28 NDN-MPS scalability to signer number and data size 93

5.1 Sign-on in OIDC and in EL PASSO. 95

5.2 An overview of EL PASSO. 97

5.3 An overview of ReLiShare . 105

5.4 Intuitive explanation of knowledge-based leaker identification in ReLiShare . . . 107

x

LIST OF TABLES

4.1 Naming Conventions in Sovereign . 34

4.2 ROM and RAM consumption of Sovereign applications 46

4.3 A comparison between RapidVFetch and related works 80

4.4 A comparison of overhead between NDN-MPS BLS and NDN-CXX signatures . 93

xi

ACKNOWLEDGMENTS

First and foremost, I sincerely thank my esteemed advisor, Prof. Lixia Zhang, for her

insightful guidance, patience, and continuous support throughout my Ph.D. study. Her

relentless pursuit of better networking systems and her diligent, rigorous, and earnest attitude

to scientific research have encouraged me in all the time of my academic research and daily

life.

I also want to thank my Ph.D. committee members for their time and valuable feed-

back on my research works, including Prof. Leonard Kleinrock (UCLA), Prof. Songwu Lu

(UCLA), Prof. Peter Reiher (UCLA), and Prof. Alexander Afanasyev (Florida International

University).

I am grateful to my colleagues at Internet Research Lab, including Yingdi Yu (Face-

book), Wentao Shang (Snapchat), Haitao Zhang (Apple), Yanbiao Li (Chinese Academy of

Sciences), Philipp Moll, Zhongda Xia, Xinyu Ma, Tianxiang Li, Tianyuan Yu, Eric New-

berry, Yuming Xia (Intel), Yukai Tu (Coinbase), Sichen Song, Tyler Liu, and Yufeng Zhang,

and my collaborator at UCLA, including Siva Kesava Reddy Kakarla, Vishrant Vasavada,

Arthi Padmanabhan, and Zhaowei Tan. I benefited a lot from insightful and productive

research discussions with them.

I would also appreciate all the support and insightful discussion I received from my

collaborators from NDN project team and all over the world, including Prof. Beichuan

Zhang (University of Arizona), Prof. Lan Wang (University of Memphis), Prof. Alexander

Afanasyev (Florida International University), Dr. Craig Lee (Aerospace), Prof. Etienne

Riviere (UCLouvain), Dr. Alberto Sonnino (Facebook), Dr. Michal Krol (City University of

London), Dr. Junxiao Shi (NIST), Dr. Davide Pesavento (NIST), and others.

At last, I would like to gratefully thank my family for their unconditional love and support

throughout my whole life, especially my wife Jiusong Tang for supporting and encouraging

me in the past eight years.

xii

VITA

2012–2016 Undergraduate majored in Software Engineering, Undergraduate re-

searcher at Database and Information System Lab, Awarded the National

Scholarship of China in 2015, Nankai University, Tianjin, China.

2016 Bachelor of Engineering, Outstanding Graduate Student Award, Nankai

University, Tianjin, China.

2017 Research and Development Intern, Alibaba Group, Seattle, Washington,

US.

2020 Software Engineer Intern, Facebook, Inc., Menlo Park, California, US.

2017–2020 Teaching Assistant, Computer Science Department, UCLA, California, US.

2016–2021 Graduate Student Researcher, Internet Research Lab, Computer Science

Department, UCLA, California, US.

PUBLICATIONS

Zhiyi Zhang, Micha l Król, Alberto Sonnino, Lixia Zhang, Etienne Riviere, EL PASSO:

Efficient and Lightweight Privacy-preserving Single Sign On. In Proceedings of Privacy

Enhancing Technologies Symposium (PETS 2021)

Zhiyi Zhang, Tianxiang Li, John Dellaverson, Lixia Zhang, RapidVFetch: Rapid Download-

ing of Named Data via Distributed V2V Communication. In Proceedings of IEEE Vehicular

Networking Conference (IEEE VNC 2019)

xiii

Yanbiao Li, Zhiyi Zhang, Xin Wang, Edward Lu, Dafang Zhang, Lixia Zhang, A Secure

Sign-On Protocol for Smart Homes over Named Data Networking. IEEE Communications

Magazine, 2019

Craig Lee, Zhiyi Zhang, Yukai Tu, Alex Afanasyev, Lixia Zhang, Supporting Virtual Orga-

nizations Using Attribute-Based Encryption in Named Data Networking. In Proceedings of

IEEE International Conference on Collaboration and Internet Computing (IEEE CIC 2018)

Zhiyi Zhang, Yingdi Yu, Sanjeev Kaushik Ramani, Alex Afanasyev, and Lixia Zhang, NAC:

Automating Access Control via Named Data. In Proceedings of IEEE Military Communi-

cations Conference (IEEE MILCOM, 2018)

Zhiyi Zhang, H Zhang, E Newberry, S Mastorakis, Y Li, A Afanasyev, L Zhang, An Overview

of Security Support in Named Data Networking. IEEE Communications Magazine, 2018

H Zhang, Y Li, Zhiyi Zhang, A Afanasyev, Lixia Zhang, NDN Host Model. ACM SIGCOMM

Computer Communication Review (CCR), 2018

Yu, Yingdi, Alexander Afanasyev, Jan Seedorf, Zhiyi Zhang, and Lixia Zhang, NDN De-

Lorean: An authentication system for data archives in named data networking. In Proceed-

ings of ACM Conference on Information-Centric Networking (ACM ICN, 2017)

Tianyuan Yu, Zhiyi Zhang, Xinyu Ma, Philipp Moll, Lixia Zhang, A Pub/Sub API for

NDN-Lite with Built-in Security. Named Data Networking Technical Report 0071, 2021

Zhiyi Zhang, Vishrant Vasavada, Jonathan Lin, Siva Kesava Reddy K, Peter Reiher, and

Lixia Zhang, Producer-Assisted Pushback. Named Data Networking Technical Report 0065,

xiv

2021

Li, Yanbiao, Alexander Afanasyev, Junxiao Shi, Haitao Zhang, Zhiyi Zhang, Tianxiang

Li, Edward Lu, Beichuan Zhang, Lan Wang, and Lixia Zhang, NDN Automatic Prefix

Propagation. Named Data Networking Technical Report 0045, 2018

Zhiyi Zhang, Yingdi Yu, Alex Afanasyev, and Lixia Zhang, NDN Certificate Management

Protocol (NDNCERT). Named Data Networking Technical Report 0054, 2017

xv

CHAPTER 1

Introduction

1.1 The Development of Network Security

The requirement of network security came along as far back as 1988 when the Morris

worm [Orm03] hit more than six thousand computers on the Internet. After that, peo-

ple start to realize the growing threats in computer networks and network security becomes

a common requirement.

The essential abstraction of the network, as indicated by TCP/IP, centers around host

identifiers and consequentially, the model of communication is based on point-to-point chan-

nels between two hosts. At the time when TCP/IP was designed back in the 1970s, network

security is not considered a big concern yet and thus TCP/IP protocols do not have coun-

termeasures to network attacks. In the early 1990s, due to the risk of using unprotected

TCP/IP, applications like e-commerce requires network security solutions. As a result of

need, a number of supplementary mechanisms such as IPSec [FK11], SSL [FKK11], and

its successor TLS [Res18] have been patched to today’s network stack. Since TCP/IP is

based on the channel established by the host-to-host connection, the security added by these

solutions is also bound to channels. That is, the security of data relies on setting up a

synchronous channel to a known host, and the security primitives are only applied to data

being transferred in a channel.

In 2006, Van Jacobson gave the talk about Content-centric Networking [JST09], in which

a new abstraction of networking was proposed – the network centers around the data name

1

and the communication model is to fetch named data interested by the applications by the

data name. A new network security model, data-centric security, was also proposed together

to work with the new network architecture. The main idea is to directly secure the data

so that the security protection of data is self-containing and independent of where the data

is fetched or stored in the network. Since the data is also named, the secured data can

be located and fetched by the name, rather than the IP address of the host where the data

originates, allowing data to be fetched and verified from any host who has a copy of the data.

A typical construction of a piece of named secured data is composed of the data name, the

data payload, and a digital signature generated by the data producer. As such, anyone who

knows the signer (i.e., signer’s public key) can authenticate the data regardless no matter if

the content is in transmission or cached in some storage systems. When data confidentiality

or privacy is a concern, the payload can be encrypted and the name can also be obfuscated

with mechanisms specified by the applications.

The idea was later followed by different projects under the umbrella of Information-

centric networking (ICN) in Europe, and around the same time, realized by Named Data

Networking (NDN) [ZAB14] sponsored by NSF in the U.S. In this dissertation, we focus on

NDN as it is the most developed version so far.

1.2 Two Ways of Providing Network Security

Under this background, we first want to understand the difference between the two models

with regard to the application’s network security requirements.

The ultimate goal of network and network security is to serve applications, which can be

confirmed by different network layering model (Figure 1.1) since the application layer is on

top of the network layer. To be more specific, network and network security need to help

applications to send and receive data that can meet their security requirements, including

data integrity, authenticity, confidentiality, etc. For this purpose, channel-based security and

2

Application and
Application Protocols

Transport

Link Layer
Including IP/TCP/UDP

Transmission Media

NDN

Application

TCP, UDP, etc.

Link Layer

Transmission Media

IP

Figure 1.1: TCP/IP and NDN network layering models

data-centric security take fundamentally different approaches.

Channel-based security: Channel-based security model secures channels. It works well

in the early days of the Internet when clients directly connect to the server over the network

infrastructure. At this time, channel-based security is sufficient to satisfy application’s needs

as talking to an trustworthy host leads to getting trustworthy data. For example, if the client

can ensure that a piece of news is truly downloaded from the IP address of ABC News’

website, the client can believe the data is truly generated by ABC News because the server

identified by the IP is owned by ABC News.

However, there are intrinsic deficiencies in the channel-based security model.

• First, channel-based security was designed to work with synchronous channels over

the Internet infrastructure. However, Internet connectivity has changed significantly

in the past twenty years and many direct client-server connections no longer exist.

For example, many application services operate over non-infrastructure networks like

mobile ad-hoc networks and Internet of Things (IoT). In addition, Content Delivery

Network (CDN) has been widely used as server proxies, which breaks the synchronous

and direct client-server connection. Therefore, asynchronous communication is needed

in these scenarios but channel-based security does not fit well.

3

• Second, while what applications care the most is “what”, i.e., secured data, the

channel-based security answers the question of “who”, i.e., setting up a secured chan-

nel to a specific host, and thus there is a cognitive mismatch. For example, when

fetching a piece of data from CDN servers, what clients want is the data produced by

content providers but however, the channels are between clients and CDN providers.

Thus, there is a gap because a secured client-CDN channel does not lead to the se-

cured data from a content provider. To work around, existing CDNs providers need to

“impersonate” content providers by obtaining the latter’s identity, usually in the form

of cryptographic keys that supposed to be known to the content providers only.

The two deficiencies can show up tangled together in today’s network systems, and a

piece of evidence is today’s CDN services as mentioned above.

Data-centric security: In contrast, in the data-centric security model, data is directly

secured. Thus, the data-centric security model cognitively matches what applications need.

In addition, since the data-centric security model no longer assumes a synchronous channel,

it is friendly to networks that require asynchronous communication, including wireless net-

works, mobility networks, delay tolerant networks, and so on. Using the CDN as an example,

if NDN is deployed as the Internet, the client can directly verify that the data is produced

by its content provider regardless of whether the data is asynchronously fetched from a CDN

service provider or synchronously downloaded directly from the content provider.

The concept of data-centric security has also been observed in new trends in web devel-

opment, confirming applications’ need of securing “what” instead of “where”. For example,

the Web Package [Yas21] mechanism aims to let clients use content when they are offline and

in other situations where there does not exist a direct connection to the server where the

content is generated. To ensure the security of the content, signed HTTP exchange [Yas20]

has been proposed to make an HTTP file just like a piece of named secured data in NDN,

whose security is independent of connections. Other works sharing the similar high-level

idea include IPFS [Ben14], Verifiable Credential [SLC19], etc.

4

However, due to the currently deployed TCP/IP architecture, these new mechanisms can

only be implemented at the application layer, orthogonal or even conflicting to the underlying

channel-based security. For example, additional complexity is needed to map the secured

objects to legacy IP addresses: IPFS applies the Distributed Hash Table (DHT) mechanism

to convert an content hash based IPFS content identifier to IP hosts.

1.3 Design Security Solutions with Named Secured Data

Through the analysis of the two security models, we realize the data-centric security model,

especially NDN’s named secured data, allows to address security issues that may be non-

trivial to the current practice of network and network security. For this purpose, we apply

NDN’s named secured data and designed a number of security solutions to address several

real-world challenges, ranging from DDoS mitigation to secure communication in smart home

networks and vehicular networks.

• We designed Sovereign [ZGM20] to build autonomous smart home systems with NDN

over local broadcast media. This is big departure from today’s best practice where the

home control dependents on the external cloud and consequently the user’s privacy

like daily operations are also disclosed to the cloud. In Sovereign, trust is built at the

local home instead of the cloud. Utilizing named secured data, resources at home can

be accessed with naming conventions without a centralized message broker and are

secured without the need of setting up secured channels among home participants. In

addition, Sovereign utilizes data names for fine-grained trust management and access

control.

• We developed FITT [ZVK21] to mitigate the current network flooding attacks. To

work with named secured data, NDN uses a stateful forwarding plane. By utilizing

the in-network state, FITT is able to accurately track the real attackers and propagate

the filtering rules to network nodes near the attackers. In addition, with named traffic,

5

FITT can perform fine-grained traffic throttling without bothering benign traffic flows.

Importantly, FITT is incrementally deployable with incentives to stakeholders.

• We proposed DLedger [ZVM19] as a general logging component that is immutable,

high-performance, and distributed. DLedger is built over a peer-to-peer NDN net-

work, a synchronized data structure based on Direct Acyclic Graph (DAG) of blocks

with hash, and a set of security conventions to ensure the robustness of the system.

Compared with conventional logging systems and blockchain systems, DLedger ensures

immutability while removes the single head of line blocking in single-chain systems.

• We developed RapidVFetch [ZLD19], an data fetching system to facilitate data down-

loading in vehicular networking. Since it is the requesting vehicle that best knows its

future locations and desired content, RapidVFetch lets each vehicle, called a requester,

express their needs by Interest packets which are small in size, and solicit help from

other vehicles, called forwarding vehicles, through V2V communication. The forward-

ing vehicles forward these Interest packets to vehicles at future locations and express

them to the RSU, where the data will be prefetched and cached. With named secured

data, the desired data can be expressed accurately and the prefetched data can be

cached and consumed securely.

• We also designed NDN-MPS [ZLK21], a multiparty authentication and authorization

for distributed energy resources control in the smart grid. Since multiparty signing

indicates a trust model that is very different from the conventional producer-consumer

trust model in NDN. Therefore, NDN-MPS extends the trust schema to support com-

plex trust policies where multiple signers are involved. With named secured data,

multiparty authentication and authorization can be implemented coherently with the

network design instead of as a separated piece realized purely at the application layer.

Through the design discussions, we demonstrate a new way of providing network security

departing from today’s practice. We show how data-centric security and especially, named

6

secured data, can be applied to address security challenges that are intractable to the channel-

based security model, confirming the benefits of the new network security model.

1.4 Bring Secured Data to Today’s Network Systems

We also designed two systems that are not directly built over NDN but still follow the

high-level idea of providing data-centric security to enhance security in the current Internet.

• We developed EL PASSO [ZKS21], a privacy-preserving and asynchronous Single Sign-

on (SSO) system. Instead of relying on setting up a synchronous secured channel to

the trusted third party (IdP) for each authentication operation, a client can obtain a

piece of secured data, i.e., the credential, from the IdP. Furthermore, in EL PASSO,

such a credential allows the client to authenticate herself to services in an anonymous

way with selective attribute disclosure.

• We designed ReLiShare [ZXG20], a leaker identification system for sensitive data shar-

ing. Instead of using the raw dataset in the sharing process, ReLiShare lets the shared

dataset itself carries sufficient information for future leaker identification in case of a

data leakage event. As such, the security property for leaker identification still stays

with the dataset even after the data sharing is finished, i.e., the channel between the

data owner and receiver is ended. In addition, ReLiShare is able to immutably record

each sharing process for non-repudiation and identify a guilty data owner (e.g., who

leaks data by accident after the sharing), non-colluding guilty receivers, and colluding

receivers.

Limited by the deployed architecture and security, the secured data in these works cannot

be named for networking. As a result, additional complexity and compromise of two security

models are needed for them to fit today’s Internet. Note that the statement also applies to

the secured data in other data-centric security solutions in today’s Internet, for example, the

7

signed HTTP object in the Web Package or the Verifiable Credential object. In comparison,

NDN’s way of named secured data is to remove the discrepancy by providing a coherent

data-centric network-to-application solution suite.

1.5 Outline

In the rest of the dissertation, we first revisit the network security and investigate the dif-

ference between the existing channel-based security and data-centric security in Chapter 2.

Then in Chapter 3, we systematically describe how NDN provides data-centric security with

named secured data and the stateful forwarding. We then show how to utilize NDN’s data-

centric security support to build security solutions in Chapter 4 and show how to apply the

idea of data-centric security to network systems in today’s Internet in Chapter 5. In the

end, we conclude the dissertation and talk about future works in Chapter 6

8

CHAPTER 2

A Perspective of Network Security

2.1 Network Security from Application’s Perspective

To help understand the difference between channel-based security and data-centric security,

it is important to first make clear the goal of network security. For this purpose, we collect

several existing definitions of network security from different sources.

As defined in ISO/IEC 27033-1:2015 [ISO15]:

“Network security applies to the security of devices, security of management

activities related to the devices, applications/services, and end-users, in addition

to security of the information being transferred across the communication links.

It is relevant to anyone involved in owning, operating or using a network.”

As defined in Wikipedia [Wik21b]:

“Network security is a set of rules and configurations designed to protect the

integrity, confidentiality and accessibility of computer networks and data using

both software and hardware technologies.”

As defined by SANS Institute [SAN21]:

Network security is the process of taking preventative measures to protect the

underlying networking infrastructure from unauthorized access, misuse, malfunc-

tion, modification, destruction or improper disclosure. Implementing these mea-

9

sures allows computers, users and programs to perform their permitted critical

functions within a secure environment.

As shown, existing definitions consider both hardware and software security, and both

local device security and communication security. However, since the discussion of channel-

based security and data-centric security is less related to the hardware and localhost security,

for the sake of simplicity, we assume that the local hardware platform and the localhost

environment, which is managed by the operating system, are secure when discussing two

security models.

With the assumption, we can see existing definitions actually cover two main aspects.

• The security of the network itself, including the security of the network devices and

networking infrastructure.

• The security of communications and the data exchanged over the network. This is to

serve the applications, services, and end-users.

Since the network devices and the networking infrastructure are also managed by applications

(e.g., the routing process can be considered as an application process, SDN controllers) and

application layer protocols (e.g., DNS, DHCP), we can unify the two into one, that is, the

network security is to provide applications with secure communications and data exchange.

We want to highlight the importance of applications and understand network security

from the application’s perspective. This is because the ultimate goal of the network is

to serve applications, confirmed by TCP/IP model, the OSI model, the NDN model, and

many other network system architectures. Considering the network security is to secure the

networking process, eventually, the goal of network security is also to serve applications.

Therefore, to understand network security, we first need to answer one question – what is

the application’s need? Is the need to establish a secure channel between network participants

or to ensure the data sent to and received from the network is secure? The first answer

10

leads to today’s network security solutions which center around channels while the second

answer leads to the data-centric security model. We argue the application’s need is secure

data instead of secure channels. This conclusion can be inferred from several aspects: (i)

applications serve human users and human users care about the data instead of the channels;

(ii) the goal of establishing secure channels is also to securely send and receive data.

To this end, combining the goal of network security and what application’s expectation of

secured data, we give the following description of network security. Network security refers

to the protection of data transferred in the network to meet application requirements of data

availability, integrity, authenticity, confidentiality/access control, privacy considerations, and

other security related properties.

In the rest of this chapter, we will discuss the channel-centric security model and data-

centric security model, and analyze their difference based on this notion.

2.2 Channel-based Security

As stated, channel-based security was a necessity as the result of need, instead of an option,

at the time. The consequence is that the channel-based security model becomes the default

model for TCP/IP architecture. For example, web security is largely based on the HTTPS

protocol which secures the channels between clients and web service providers. With such a

secured channel, a client can authenticate the server’s possession of the claimed domain name,

and both sides of the channel can ensure the authenticity and secrecy of the transferred data.

Not only being used in web, TLS, the underlying protocol of HTTPS, has also been widely

used in many other network systems, including Simple Mail Transfer Protocol (SMTP),

Virtual Private Network (VPN), Onion Routing, Secure Shell (SSH), File Transfer Protocol

(FTP), etc.

In the channel-based security model, whether the data is secure depends on establishing

the secure channel (e.g., a TLS connection) with an expected host. Importantly, the security

11

primitives are applied to data only when the data is in the synchronous channel. Once a

piece of data leaves the channel, the security properties of the data no longer exist. For

example, after a client Alice downloads an HTTP file from ABC News, Alice cannot share

this file with another client, Bob, and prove to Bob that the file was generated by ABC

News. Therefore, Bob needs to establish a channel to ABC News’ server and download the

same file again.

Based on these characteristics, we give the following summary of the channel-based se-

curity model.

• The security of data relies on setting up a synchronous channel to an authentic host

where the data originates.

• The security properties of data exist only in the context of the channel.

When asynchronous data exchange is needed, for example, in mobile ad hoc networks,

wireless networks, delay tolerant networks, and networks with intermittent connectivity,

applying channel-based security can cause additional and undesired complexity in the system.

End-to-end Principle is Being Broken: In a relatively simple scenario where clients

directly build TCP/IP connections to the servers, the channel-based security model follows

the end-to-end principle as the security can be ensured by two end hosts without much help

from middle network devices.

However, the end-to-end principle has been gradually broken since the use of middleboxes

that break the end-to-end TCP/IP connection between clients and servers, especially when

the middleboxes are provided by a different party from the service provider, e.g., CDN

service providers. This is because the security is no longer added or verified by two end

hosts, instead, it is the middleboxes who take the responsibility of the client (e.g., forward

proxies) or the server (e.g., reverse proxies) in the communication. As a result, there is a

discrepancy. For example, when CDN is used, the clients perceive that the data is securely

downloaded from the content provider, but in fact, it is from the CDN providers.

12

Assumptions of Channel-based Security: As stated, the channel-based security model

requires synchronous communication to maintain the secured channel. Nowadays, with the

wide adoption of CDN and other types of services like load balancing service, DDoS miti-

gation service, and VPN, one single channel between the client and server no longer exists.

Therefore, to ensure security with multiple channels, channel-based security models require

that

• Each channel and middle node must be secure. If any channel is compromised, the

security of the data exchange no longer holds.

• Additional trust relationship between client and middle node, or between middle node

and server, must be established. For example, content providers share private keys for

HTTPS connection to CDN nodes so that clients can trust the CDN nodes. Similarly,

when using a VPN, the client must put trust in the VPN proxy as the VPN proxy can

see all the incoming and outing traffic made by the client.

2.3 Data-centric Security

In contrast, another security model is the data-centric network security model followed by

NDN. The unit being secured is a piece of named data, called a Data packet. A Data

packet is composed of a data name, the data payload, and a digital signature covering the

name and data payload. The signature is generated by the data producer application at

the time of Data packet creation. The security properties of data, e.g., the integrity and

authenticity ensured by the signature, the confidentiality provided by payload encryption,

are independent of any channels, Being named, a Data packet can be fetched by its name;

the request carrying the name is called an Interest packet. Being secured in a self-contained

way, a Data packet can be cached by any network nodes, and even a Data packet is fetched

from the cache rather than the original data producer, a data consumer application can still

verify the data’s security properties.

13

Name or Name Prefix

Other parameters

Name of data

Payload
Signing Key Name

Signature

Interest Packet Data Packet

Optional Signature

Figure 2.1: Named secured data in NDN

Besides being applied in NDN, the concept of this network security model can also

be observed in a number of application layer projects such as IPFS, JSON web signature

(JWS) [JBS15], Verifiable Credentials [SLC19], and Signed HTTP Exchange (SXG) [Yas20]

used in the Web Package [Yas21]. For example, similar to a Data packet in NDN, a JSON

with signature, a verifiable credential, or a signed HTTP file can be cached and consumed

preserving the security properties without the need to establishing a channel to the original

server where they originate. However, due to the currently deployed Internet architecture,

they are not explicitly named for data retrieval; instead, to obtain such a secured data ob-

ject, a client needs to establish channels to the data object host and use application layer

identifier, e.g., URL, to get the object. In comparison, IPFS has explicitly named secured

data: each data object is named with hash value based content identifiers which are to iden-

tify content by what is in it rather than where it is located. Each data object in IPFS is also

secured in a way that once the client obtains the content identifier, it can ensure the integrity

of the fetched data object by comparing the hash value. Compared with NDN, the IPFS’s

hash value name only ensures integrity while a digital signature in an NDN Data packet also

ensures authenticity. Importantly, since IPFS is built over the current TCP/IP architecture,

it requires a mapping service to translate IPFS content identifiers to IP addresses.

Based on these characteristics, we can summarize the data-centric security model as

follows.

• The security properties of data are bound to data itself.

14

• Security properties are preserved regardless of the network context.

• Data-centric security model allows both synchronous and asynchronous data exchange.

With the data-centric security model, each data object is secured independently of where

the data is kept. Correspondingly, to make these data objects available to the network

and preserve the independence of data security, the network identifier should also be data-

centric, e.g., the IPFS hash based name and NDN’s data name. In the rest of the dissertation,

we focus on NDN’s implementation of the data-centric security model, namely, the named

secured data.

Data-centric Security Preserves End-to-end Principle: As stated, the use of channel-

based security breaks the end-to-end principle since many direct end-to-end connections no

longer exist. In contrast, NDN and generally speaking, the data-centric security model, still

preserve the end-to-end principle Using NDN’s Data packets as an example, no matter how

a Data packet is obtained, the consumer application can verify its security properties that

were directly added by the data producer application. Such security check is between two

ends and unrelated to any other middle nodes like CDN services.

Data-centric Security with Forward Secrecy: Forward secrecy with its typical im-

plementation, TLS, gives an impression that forward secrecy is designed for channel-based

security. This is because in TLS, the security is bound to the connection, and once the TCP

connection changes, a new TLS session or a new set of keying material derived from the

previously shared key (PSK) should be used.

However, does this mean the forward secrecy can only exist in channel-based security?

To answer the question, we first revisit the definition of the forward secrecy [Wik21a].

“In cryptography, forward secrecy (FS), also known as perfect forward secrecy

(PFS), is a feature of specific key agreement protocols that gives assurances that

session keys will not be compromised even if long-term secrets used in the session

15

key exchange are compromised.”

The core of FS is the relationship between a dedicated key for a session versus a long-term

private key kept by the end hosts. This does not restrict whether the dedicated key is bound

to a channel identified by a pair of sockets or a group of Interest and Data packets that are

independent of channels (there is no concept of a channel in NDN).

Considering a producer and a consumer want to exchange some secret data that is not

supposed to be seen by third parties. To ensure forward secrecy, they can perform a Diffie-

Hellman (DH) key exchange to obtain a shared secret. Then both of them derive a common

key for content encryption, e.g., by applying AES-GCM to the payload of Data packets.

On the one hand, the Data packet carrying the encrypted payload still promise forward

secrecy because even if the long-term identity key of either the producer or the receiver gets

compromised, the attacker cannot recover the shared secret to decrypt the data packet. On

the other hand, the security is still data-centric because the security of the Data packet is

independent of any underlying channels. For example, the data can be cached or stored by

some storage services and be used asynchronously by the consumer.

The use of DH or other means to achieve forward secrecy does cause some limitations

to the Data packets. For example, the data cannot be reused by multiple consumers and

there will be a very low hit rate even the packet is cached. However, in the scenario where

forward secrecy is needed, the data being protected is usually not expected to be reused, so

the limitation can actually be beneficial to the security of the data.

2.4 A Comparison

From the description of the two different security models, the core difference is the network

dependency of the security primitives that have been applied to the data. Under the channel-

based security model, data security relies on the channel between the two hosts while in data-

centric security model, the data security properties of data hold regardless of the network

16

context. For example, a cached TLS packet with MAC and encrypted payload cannot be

reused in another TLS channel but a cached NDN Data packet can be reused by other

requesters.

The root cause of the difference comes from the different network abstractions used by the

two architectures. TCP/IP is about the connection between a pair of hosts, so the security

model added to it naturally bound to the channel. NDN centers around named data and

thus the security model fits it by directly securing named data instead of channels.

As stated, there is a mismatch between the application’s needs for secured data and the

secured channels provided by the channel-based security model. When data objects need

to be cached in CDN nodes near the content requesters, directly applying channel-based

security becomes insufficient because the CDN providers’ TLS certificates do not match the

content provider’s certificate. As a consequence, quick-and-dirty solutions like private key

sharing between content providers and CDN providers are being used. In contrast, if the

data-centric security can be applied, there is no mismatch and the system complexity can be

much reduced because requesters can check the security of the content regardless of whether

it is fetched from a CDN provider or the content provider itself. In fact, the Web Package

mechanism [Yas21] was designed to solve this issue with an application layer mechanism,

following the idea of data-centric security.

Through the comparison, we can see data-centric security model matches the need of

content delivery applications. If being deployed in the current Internet, the mismatch be-

tween content delivery and channel-based security model can be well addressed. Nowadays,

more than half of all web traffic has been served over CDNs [Aka21], and that percentage

is predicted to grow as applications offer more varied content types. Therefore, if not well

addressed, the mismatch may keep causing new complexities and security issues in the future.

It is noteworthy that the comparison does not indicate data-centric security model is

always more suitable than channel-based security. A typical use case of channel-based se-

curity is the exchange of data that is customized, non-static, and not reusable, e.g., user’s

17

bank account information. For such type of data, cache or re-usability is not needed and

usually unwanted, and thus a secured channel directly between the client and the server

can be a better choice. Furthermore, in the channel-based security model, expensive public

key signature verification is usually used only at the beginning of the connection for iden-

tity verification, and the later data is exchanged using lightweight message authentication

code (MAC) and symmetric key encryption. In data-centric security, however, public key

signature scheme is widely used and thus may affect the performance of data exchange.

2.5 Trust as a Central Piece of Network Security

Trust in security can be considered as an agreed-upon relationship between two or more

identities that is governed by criteria for secure interaction, behavior, and outcomes relative

to the protection of assets In the channel-based security model, when setting up a secured

channel, the client must strictly authenticate the server to ensure the server is trustworthy

with regard to the desired data. In the data-centric security model, the data consumer

performs data signature verification to authenticate the data producer with regard to the

corresponding named data.

Trust is a fundamental component in network security since network security relies on

a certain trust relationship between involved parties. First, trust is directly reflected by

identity authentication because trust only applies to certain identities. Without knowing the

identity of the other side of a channel or the data producer, there is no trust relationship.

For example, a user Alice wants to retrieve news from ABC News. This already indicates

that the user trusts the identity of ABC news for providing her the desired news data.

If Alice cannot authenticate that the data is sent from (under channel-based security) or

produced by (under data-centric security) ABC news, then Alice cannot verify the obtained

data against certain trust policies. Second, other security properties like authorization are

also built on certain trust relationships. For example, when performing SSH to a remote

18

server, after authenticating the identity of the client, based on the trust relationship encoded

in the client’s user group configuration, the client will be authorized accordingly.

Trust relationship in cyberspace is built based on the trust relationship in the real world.

For this reason, out-of-band operations are usually, if not always, needed to bring the trust

from the real world to cyberspace. One most common way is to install keys associated with

the trusted party, e.g. public key certificate, in an out-of-band way. Using the example of

Alice and ABC News, the CA certificates used to authenticate ABC News’ certificate are

pre-installed to Alice’s web browser.

Trust and Identity Management in Today’s Internet: In today’s public Internet, an

identity is represented by its TLS certificate. Until recently, most TLS certificates have been

issued by a relatively small number of commercial Certificate Authorities (CAs) [ABC19].

Commercial CA services came into existence in the mid-90s to meet the need of cryptographic

protection for the emerging e-commerce applications at the time. Pragmatic solutions were

also developed to install the self-signed certificates of these CAs into end-user devices as

trust anchors, largely through side channels (e.g., web browser installation and updates),

and behind the back of users. Rapid growth for certificate services also leads to the rise of

hierarchical relationships between CA providers, for example with CA-1 issues a certificate

to CA-2 which in turn issues certificates to end users. By and large one could view CAs in

the web PKI as trust anchors, whose certificates get installed into user devices. Note that

in practice, a trust anchor can run multiple intermediate CAs whose certificates are derived

from the trust anchor certificate, but they usually managed by the same party and thus can

be considered as one entity.

The research community has identified several longstanding issues with today’s CA prac-

tice, which we summarize below.

• Authenticity vs. Trust: There are different views regarding the meaning of a certifi-

cate CP issued to party P by a CA. Most commercial CA providers hold the view that

19

if P holds a certificate CP issued by them (especially if it is an Extended Validation/EV

certificate), then CP certifies both P ’s identity and its trustworthiness. Another view,

shared by LetsEncrypt, today’s de facto largest CA issuing free-of-charge certificates

using automated means [Let20, BHM19], believes that a valid TLS certificate only

certifies the authenticity of party P ’s identity, but not P ’s trustworthiness. For ex-

ample, a phishing website can successfully obtain a valid TLS certificate from a CA,

commercial, or otherwise, as long as it owns a domain name and has an available web

server [Cim17].

• Externality and Trust: Today’s CAs are external and thus agnostic to the commu-

nicating parties who need to establish trustworthy relations [SJ09]. Anyone can get a

certificate, n unrelated parties P1, P2 · · · Pn possessing a certificate each is unrelated

to whether they trust each other. The fact that the trust anchors of these certificates

are decided by yet another external entity (e.g., browser vendors) behind the back of

end users further argues that certificates serve the purpose of authentication at best,

not trust relations.

• Constraints: In today’s practice, a certificate is issued to a site (a company, or at least

a DNS name owner), and the certificate owner is not allowed to issue certificates for its

own sub-namespaces, making it difficult to support the principle of “minimal privilege”.

Another practice is setting a prolonged certificate lifetime: generally a few months as

a minimum, and often one year or even longer–this is especially true in the case of

manually processed certificates. Compounded with the coarse certificate granularity, a

long lifetime reduces certificates’ resiliency against brute force usage-analysis attacks.

Distributed Trust Management and Flexible Trust Policy: In comparison to the

current practice, another way of managing trust and identity is to let each system have its

own trust anchor and identity management, for example, with Simple Distributed Security

Infrastructure (SDSI) [RL96]. Under this model, the trust management is internal of the

20

system and as a consequence, the identity manager can issue certificates to entities based

on their application-layer attributes. For example, each certificate can be associated with a

meaningful name that can be understood by other entities in the same system. By embedding

different attributes into the name, the certificate can allow fine-grained security. For example,

if the name carries the role of the entity, the certificate can be used for role-based access

control.

To overcome the inability to issue sub-namespace certificates while not messing up the

system with a large number of certificates, expressive trust policies should be made for each

critical operation. These trust policies should clearly constrain the power of each identity

and their derived identities with regard to certain application layer operations. Regarding

the lifetime of certificates, to allow short-lived certificates as an enhancement of security,

automated certificate management is required.

21

CHAPTER 3

Data-centric Security Support in NDN

3.1 A Brief Introduction to NDN

Named Data Networking (NDN) [ZAB14] changes the Internet communication model from

TCP/IP’s pushing packets to destination addresses to fetching named secured data. Fig-

ure 3.1 shows the most important features of NDN.

• Naming data with application-defined names. Data names can provide rich application

layer semantics.

• Securing data directly. This allows security stays with the data regardless of the

network context.

• Stateful forwarding to forward data requests and the replied data in the network.

Naming data

Securing data
directly

Stateful
forwarding

Named Data
Networking

Figure 3.1: Three most important features of NDN

To be more specific, in NDN, an application fetches a piece of data by requesting its

name. Such a request is called an Interest packet and the fetched data is a Data packet.

22

As shown in Figure 3.2, both Interest and Data do not contain any IP addresses or other

network topological identifiers.

Name or Name Prefix

Other parameters

Name of data

Payload
Signing Key Name

Signature

Interest Packet Data Packet

Optional Signature

Figure 3.2: Interest and Data packets in NDN

After receiving an Interest packet from the network, as shown in Figure 3.3, a router

forwards the Interest by looking up the Interest name and performing long-prefix match

against the forwarding information base (FIB), which is like the FIB in IP but is made up

with name prefixes instead of IP prefixes. For each forwarded Interest packet, the router will

set up a record of the Interest and its forwarding path and keep it in a data structured called

Pending Interest Table (PIT). After the Interest packet arrives at a network node or end host

that has the matched Data packet, the Data packet will be replied. To forward the Data

packet back to the Interest sender, each router will look up the PIT, find the corresponding

Interest record, and send the Data packet to the interface from which the Interest came. In

this way, the Data packet will following the path of Interest reversely back to the application.

At the same time, routers can cache the Data packets so as to satisfy future Interest packets

asking for the same piece of data.

Therefore, data name is the network identifier used in NDN. However, different from

TCP/IP’s design, where each layer defines its own identifier space (e.g., network layer uses

IP while transport layer uses port number), data names in NDN are semantic meaningful,

hierarchical, and most importantly, defined by applications.

23

NDN Forwarding Daemon (NFD)

Content
Store PIT FIB

Interest
Data

Forwarding Strategy

T

1. Hit Cache? 2. Find Matching
PIT Entry?

3. Find Matching
FIB?

F F T

(a) Forwarding an Interest packet

NDN Forwarding Daemon (NFD)

Content
Store PIT Data

1. Find Matching PIT Entry?2. Cache

3. Forward

Forwarding Strategy

(b) Forwarding a Data packet

Figure 3.3: Network packet forwarding in NDN

3.2 Security Support of NDN

NDN as a network layer protocol itself does not directly provide data security. Instead,

NDN builds security into its design by allowing applications to add security to their data

in a data-centric way. To be more specific, at the time of Data packet generation, the data

producer will need to cryptographically sign each Data packet. In addition, cryptographic

schemes like symmetric or asymmetric key encryption or system solutions like onion routing

can be applied over NDN to provide data confidentiality with access control and privacy.

The security support in NDN security is realized in a cross-layer manner: NDN provides

a general format to carry the security properties with Data packets while applications make

use of it by adding/verifying security with keying material and security policies. Since

data names provide rich application layer context, names can be utilized for security policy

making.

24

3.2.1 Data Availability

NDN provides availability naturally by using named secured data as the basic unit of net-

working. Specifically, since each Data packet is secured directly, a Data packet can be cached

by any network router or dedicated storage services, and at the same time, does not inval-

idate the data security, thus improving the availability of data. For example, considering

Data packets that carry static content, even if the original producer is offline, data can still

be fetched by its name if the Data packets have been cached in the network.

3.2.2 Authentication and Data Authenticity

In NDN, a Data packet is not only named but also secured and the authentication of data

is built over the public key cryptography. To be more specific, at the time of generation,

the producer application will cryptographically sign the packet. This allows any party who

knows the public key of the producer to verify the integrity and authenticity of the packet.

Importantly, this verification is independent of where the packet is fetched from (i.e., from

a router’s cache or from the producer application).

To realize the above ability, NDN producers require at least a name for generating data

under and a public/private key pair. For this purpose, NDN assumes the distributed name

management and SDSI [RL96], where the Internet is composed of a number of organizations

where each organization manages its own namespace and maintains its own public key in-

frastructure (PKI). This is in a similar way to today’s domain name system in which each

authoritative server can manage their own DNS names in the zone.

Under such a model, each NDN entity is supposed to obtain a name, called an identity

name, from the local name manager. Importantly, the identity name will be associated with

the entity’s public key. To be more specific, the entity will generate or reuse a pair of public

and private key, and apply for a public key certificate from the local certificate manager. An

NDN certificate, which is also a regular NDN Data packet, binds the identity name and the

25

public key together, and is signed by the certificate manager. As a Data packet, a certificate

is named in the following way and can be fetched via Interest packets.

/<identity name>/KEY/<key ID>/<Issuer Info>/<Certificate ID>

The difference between an NDN certificate manager and a commercial TLS certificate

authority (CA) is as follows.

• Since an NDN certificate certifies a name and the name is semantically meaningful.

An NDN certificate can not only be used for authentication but also can indicate

authorization. For example, the owner of the certificate whose identity name is /exam-

ple.org/manager indicates a higher level of access rights than the owner of the certificate

for /example.org/guest. In contrast, a TLS certificate usually only serves the purpose of

authentication. This is because a commercial TLS CA is not in any specific application

system and lacks the semantics that is required for authorization.

• An NDN certificate manager is managed by the local organization while the TLS CAs

assume a global trust model because the CA’s trust anchor certificates are globally

installed by the Internet users.

An implementation of NDN certificate management is NDNCERT [ZAZ17, ZS20].

It is noteworthy that, though NDN provides approaches to data authentication, the

security of data is more than that. Authentication and trust verification ensures the data

is truly signed by the claimed private key and the key is authorized to sign such a packet.

However, it does not guarantee the correctness of the content; for example, the private key

of the data producer can be compromised and is used to sign incorrect content.

3.2.3 Named based Authorization

Since both the Data packet and the data producer have a name, constraints on these names

can be established to express trust policies for authorization. In NDN, these constraints are

26

called trust schema [YAC15]. To be more specific, a trust schema rule contains (i) the packet

name that the rule applies to, (ii) the expected signing key name or name pattern, and (iii)

a number of NDN certificates as the trust anchors. If a packet’s signing key does not satisfy

the rule, or if the signer’s certificate cannot be verified against an allowed certificate chain

(e.g., each certificate in the chain is allowed by the trust schema), the packet will be rejected

even if the signature value itself is valid.

Data Name

Signature Value

Signature Info
Key Locator:

signing key name

Data Packet Trust Schema

• Packet name that
the schema is
applied to

• Expected signing
key name

• Trusted certificates
(trust anchors)

Content

Figure 3.4: Trust schema defines the expected data and key names

In this way, besides the signature verification (i.e., authentication), the trust schema

further restricts which key can be used to sign which type of data (i.e., authorization). The

trust schema rules are supposed to be made following the least privilege principle [SS75].

For example, a temperature sensor is only allowed to sign the temperature data but is not

authorized to generate and sign a command to unlock a door. An example of using trust

schema in smart homes is Sovereign as introduced in Section 4.1.

As a generic component, the trust schema is also used in other security supports. For

example, in the data encryption based access control, the trust schema can be used by the

access control manager to define which consumer can request which decryption key.

3.2.4 Data Confidentiality and Access Control

In NDN, confidentiality can be implemented by encryption with access control based on

decryption key issuance. Importantly, as stated, public keys carried by certificates are named

27

in NDN and can be fetched as normal NDN Data packets. This is the same for encryption and

decryption keys. The difference is that the decryption key is further encrypted so that only

authorized consumers can access the decryption key. In addition, hybrid encryption is usually

used. That is, the payload is encrypted with a symmetric key for efficiency and the symmetric

key is encrypted with the asymmetric key which separates the role of encryptor and decryptor

(in comparison, the symmetric key does not distinguish encryptor and decryptor).

In this way, the access control can be reduced to the management of decryption key

issuance. The underlying realization varies depending on whether the decryption key issuance

is synchronous or not. Here we give two possible approaches as an example.

• If such issuance is synchronous, the decryption key can be requested through a remote

procedure call by the consumers. In this process, the access manager can check the

trust schema to decide whether such a consumer can sign such a decryption key request.

• If the application needs the key issuance process to be asynchronous for better avail-

ability, the key manager can generate an encrypted decryption key for all consumers

in advance and name these keys following pre-defined naming conventions. Therefore,

each consumer can follow naming conventions to fetch the key that belongs to the

consumer back without contacting the key manager in real time.

An implementation of the asynchronous NDN based access control is Name-based Ac-

cess Control (NAC) [ZYR18] which supports RSA encryption and attribute-based encryp-

tion [BSW07] of NDN Data packets with automatic key delivery with names.

3.2.5 Content and Name Privacy

Privacy poses a higher requirement than applying encryption to the Data content. As defined

in ISO 27701 [ISO19], privacy refers to the term that describes the end result of adequate

controls over the ‘processing’ of Personal Identifiable Information (PII) [MGS10a]. In the

28

context of attribute-based authentication, privacy is defined through unlinkability, which

refers to the need to be able to handle and process personal information anonymously, in

a way that precludes being able to identify the original data subjects from the information

being communicated and processed. Therefore, only encrypting content does not preserve

unlinkability if the name of the packet can be linked or traced.

A further privacy enhancement mechanism is name obfuscation, which aims to mini-

mize the information disclosure from names. From the use of NDN names, three types of

information are revealed.

• Name or prefix that can indicate a host.

• Name or prefix that can indicate an application within the host.

• Name that can indicate a piece of content served by the application.

This is similar to the three identifiers used in TCP/IP, namely, IP address, port number,

and application-layer identifier. Among the three types of information, the content name is

most diverse and information-intensive. In addition, an NDN name prefix used to indicate

host or application can also bring more information compared with an IP address or a port

number. For example, /west-la-medical-center/emergency-service can reveal more information than

“1.2.3.4:80”. Even though the IP address can be mapped to the domain name “west-la-

medical-center” after a reverse DNS lookup, the /emergency-service is still more meaningful

than “80”.

Common approaches to name privacy can include (i) encryption based mechanisms where

the sensitive information in name will be encrypted, (ii) proxy based mechanisms where the

proxy will send the requests like how VPN and Onion Routing work in TCP/IP.

29

CHAPTER 4

Usable Security Solutions with Named Secured Data

In this section, we introduce several network systems where their security challenges can

be addressed in a more efficient way by NDN’s data-centric security model than the con-

ventional channel-based security. Across very different network environments (e.g. home

network, vehicular network, Internet) and different application purposes (e.g. access control,

content delivery, DDoS mitigation), we show that NDN’s named secured data provides a

solid foundation to address some security challenges with the following properties.

• Name allows fine-grained security policy making and key management.

• Securing data directly allows asynchronous communication and is friendly to non-

infrastructure networks like wireless IoT.

• Stateful forwarding, which is to work with named secured data, provides valuable state

and insights of the traffic.

4.1 Sovereign: NDN Based Smart Home System

The majority of the materials contained in this section were modified or quoted verbatim

from [ZGM20].

Sovereign is an NDN based user-controlled smart home system. Different from the cur-

rent practice, namely cloud-based smart home, Sovereign removes the dependency on the

external servers from the control loop and allows secured local communication. The insight

30

of Sovereign is to utilize NDN’s named secured data to facilitate decentralized local wireless

communication and end-to-end security.

4.1.1 Background and Motivation

Most of today’s smart homes depend on an external cloud service to operate. A technical

reason is the deployed network architecture, namely, the channel-based TCP/IP commu-

nication model. This communication model assumes a well-established and synchronous

connection between two hosts. However, in a smart home network or IoT in general, main-

taining mesh connection among participants is not easy, e.g., it is required to maintain the

mapping between resources/services to sockets. As a result, a less-resistant way is to utilize a

centralized node for home participants to connect to and communicate with others. Besides

the technical reasons, the existing deployment of the cloud infrastructure also allows cloud

service providers to serve smart homes without changing much of the existing hardware or

software stack.

With such a model, devices are managed by the cloud backend and end users utilize

the interface exposed by the cloud to use the home smart appliances. However, recent

reports [TST17, LB16, UJS13, CCJ11, SWA17] indicate a number of issues in the cloud-

based smart home systems. For example, the cloud backend can know all the commands

made by the home users, which reveals a huge amount of user privacy at home.

Our goal is to preserve home users’ privacy from the cloud and other external dependen-

cies with a role switch of home users and the external parties. To be more specific, we propose

Sovereign to provide secure device-to-device (D2D) communication which is directly guided

by the user-defined security policies instead of the cloud. For this purpose, we let all home

participants trust a local trust anchor certificate that is locally kept by the user’s device.

In addition, we also need a local entity, called a local controller, as the interface for users

to configure security policies. To fully utilize the broadcast media, the D2D communication

is based on NDN’s named secured data so that security is no longer bound to one-to-one

31

User-defined
Policies

Local
ControllerRendezvous

Overhear

D2D
communication

(a) Centralized Control: control
is enforced at rendezvous point (b) Decentralized Control: Sovereign

Secured
Channels

Figure 4.1: Two different models

channels. To enforce security in distributed D2D communication, we make individual home

participants smarter by installing necessary security policies and keying material from the

local controller. Putting all pieces together, home participants are able to communicate

directly and securely under users’ control, removing the single point of failure resulted from

the centralized message broker.

This design is enabled by the current technological advance that the micro-controller

market now turns to 32 bits, which provides sufficient memory and computation for basic

cryptographic operations needed by Sovereign [Mar21, IC 15, IC 18a, IC 18b, EE 13].

Regarding the use of the cloud, Sovereign will not prevent utilizing cloud resources

for computation-intensive tasks or reliable data storage. However, the difference is that

Sovereign treats the cloud or other external services as regular devices or applications man-

aged by the local system. That is, these external services must be explicitly allowed and

authorized by the users, obtain the corresponding identity and keying material, and then

access the home data or services.

4.1.2 Design Overview

In contrast to the current practice where the trust anchor and the security management

authority are in the cloud, Sovereign changes it in a fundamental way by bringing the trust

32

Named entity
Named entity

Local Trust
Anchor

Controller

Security
Policies

Keying
Material

New
entity

Broadcast Network

/alice-home/
TEMP/bedroom?

Renew policies &
keying material

Name

In
iti

at
e

bo
ot

st
ra

pp
in

g

Rules

Perform
bootstrapping

Friendly UI

Figure 4.2: An overview of Sovereign

anchor to the Sovereign home controller, which is located at home and directly managed by

the home users. Home participants, including devices and applications, directly follow the

security policies made by home users through the local controller and communicate with

others. The communication is directly over the wireless broadcast media in NDN.

Figure 4.2 shows the overview of our design. Consider a home user who purchased a new

air conditioner (AC) for her home and wants to add it to her Sovereign system. To start

with, the user initiates the device bootstrapping process by some out-of-band operations like

QR code scanning or pressing some buttons. In the bootstrapping, after verifying each other,

the device will register itself to the controller and the controller will (i) send the system trust

anchor to the device, (ii) sends keying material and security policies needed by the device, and

(iii) assigns a name to the device according to the naming conventions. In Sovereign, security

policies are based on trust schema rules that are converted from user-decided configurations

collected by the controller.

After that, the AC will start running by tracking and adjusting the home temperature,

33

Type Naming Convention

Device&Application
/<home-prefix>/<service>/<location>/<entity-id>*

e.g./home/AirCon/bedroom/north-ac-1

Commands to executables

/<home-prefix>/<service>/<scope>/CMD/<cmd-id>**

e.g./home/AirCon/bedroom/north-ac-1/CMD/set-temp – device-level

command

e.g./home/AirCon/bedroom/CMD/set-temp – room-level command

e.g./home/AirCon/CMD/set-temp – home-level command

Service’s Content
/<home-prefix>/<service>/CONTENT/<location>/<entity-id>/<content-id>**

e.g./home/TEMP/CONTENT/bedroom/senor-1/temp

Encryption/Decryption Key
/<home-prefix>/<scope>/EKEY

/<home-prefix>/<scope>/DKEY

Security Policy /<home-prefix>/RULE/<location>/<entity-id>**

Notation: A component with <> represent a variable. A component without <> represent a constant string component.

∗: Actual service command, content, and policy NDN Data packets will have a timestamp suffix to achieve the data

uniqueness.

∗∗: The corresponding identity key name is the identity name with a “KEY/<key-id>” suffix.

Table 4.1: Naming Conventions in Sovereign

where home temperature data is generated by home temperature sensors. In addition, we

assume the AC can also close bedroom windows. In Sovereign, the temperature data fetching

and window command sending all take place directly between the involved devices over the

broadcast network in the form of NDN Interest–Data exchange. To get temperature data,

the AC directly broadcasts the desired data name so that any other entities who have the

data can reply. After fetching the Data packet carrying the temperature, the AC will first

verify the packet is signed by another home entity, whose certificate is endorsed by the

home trust anchor. Then, to access the payload, the AC needs to first decrypt it using keys

obtained from the controller. When issuing a command to the window, the AC will also

name this command according to the naming convention, encrypt the payload, and sign it

with its own private key. Therefore, windows in the system can fetch the command by the

name. If the AC is allowed by security policies to generate such a command, home windows

will successfully verify, decrypt, and execute the command

34

4.1.3 Naming Conventions and Name-based Security Policies

In Sovereign, each piece of data, executable, device, and keying material is named following

pre-defined naming conventions as shown in Table 4.1. The naming conventions are pre-

installed with the system software and thus, each application knows how to construct an

Interest packet to fetch the desired data or to invoke services.

Using the example of the bedroom air conditioner, the air conditioner listens to requests

under three prefixes as follows so that the AC can react to commands of different levels,

namely, device-level, room-level, and house-level commands. As shown, authorized entities

can control the home temperature in the desired granularity.

/home/AirCon/bedroom/north-ac-1/CMD/set-temp

/home/AirCon/bedroom/CMD/set-temp

/home/AirCon/CMD/set-temp

Naming conventions also facilitate the expression of security policies. Security policies

specify entities that are authorized to perform certain operations. In Sovereign, flexible

control can be achieved by specifying the names of entities and resources in the policies.

Given the name P representing one or multiple entities, and the name R representing one or

multiple resources. One can limit P ’s authorized actions to R by defining a security policy.

Such a policy can be written as a triple based on P and R, which can be either be specific

names, name prefixes, or regular expressions of names.

<P ’s name, verb, R’s name>.

For example, the verbalized policy “the controller can command all door locks” can be

written as the name-based policy <controller name, produce, door lock command prefix>.

As another example, the verbalized policy “temperature sensors can produce temperature

data” can be represented by the policy <prefix of temperature sensors, produce, temperature

content prefix>.

35

4.1.4 Distributed End-to-end Security Enforcement

The authentication and access control are managed by the controller but enforced distribut-

edly in D2D communication. In general, after converting user-defined rules into name-based

security policies, the controller distributes these policies among all entities. During run-

time, all Data packets are signed and encrypted by producers, and verified and decrypted

by consumers. In the verification step, consumers consult the available security policies and

verify whether Data producers are authorized for signing before consuming the content or

executing a command.

System Setup Phase: In the system setup phase, the controller generates an asymmetric

key pair. The public key is bound to the home prefix and published as a self-signed certificate.

This certificate represents the home’s trust anchor. The trust anchor will be installed on

each entity during the entity bootstrapping. The private key is kept secret by the controller

and is used to sign security policies, cryptographic keying material, and certificates for new

entities.

Entity Bootstrapping Phase: In the entity bootstrapping, a new entity joins the system

and learns cryptographic keying material and security policies required for later commu-

nication. The process takes place in the default broadcast media and starts with mutual

authentication between the controller and the entity, in which out-of-band operations may

be needed (e.g. QR code scanning). Then, the following information is secretly exchanged:

• The trust anchor certificate is installed on the new entity.

• The controller assigns the new entity an appropriate name according to the naming

convention (supported by additional input from the homeowner, e.g. entity location).

• The controller issues a public key certificate binding the entity’s public key and name

together. The certificate is signed with the private key of the trust anchor.

36

• Security policies and cryptographic keys used for access control are transferred to the

new entity.

An implementation of Sovereign’s entity bootstrapping process is discussed in [Ano19].

Enforcing Security Policies: While name-based security policies are maintained by the

controller, individual participants enforce these security policies for the D2D communication.

To elaborate on how these policies are enforced, we differentiate between two types of security

policies: (i) produce-policies define which entities are allowed to produce data of a specific

name pattern (e.g. sending an actuating command to a door lock), (ii) decrypt-policies define

the entities that are allowed to access data of a specific name pattern (e.g. data from specific

sensors).

Produce-policies are enforced by data receivers. To be more specific, after authenticat-

ing a Data packet, the receiving entity extracts the data name and producer’s name from

NDN Data’s name and signature fields. These names allow checking whether the data was

generated by an authorized entity defined in security policies. For example, the follow-

ing policy defines that temperature content can only be signed by a temperature sensor,

where /alice-home/TEMP is the shared prefix of all home temperature sensors, and /alice-

home/TEMP/CONTENT is the common prefix of temperature content.

</alice-home/TEMP, produce, /alice-home/TEMP/CONTENT>

Combining the Data’s name, the producer’s identity, and the available security policies allow

receiving entities to reject temperature content produced by unauthorized parties.

The same procedure is applied for restricting entities to issue commands. For example,

a produce-policy as follows indicates that all the automation applications running on the

home hub named “hub-1” can invoke executables whose names match the specified regular

expression1.

1The regular expression <>* matches zero or more name components.

37

</alice-home/AUTO/hub-1, produce, /alice-home/LOCK/<>*/CMD>

Before executing the issued command, the receiving entities first check the verified pro-

ducer name against the available security policies and rejects the command when issued by

unauthorized entities.

Decrypt-policies are enforced by utilizing Data encryption. To be more specific, every

entity is able to fetch Data by emitting an Interest packet carrying the desired content

name. The encrypted data, however, can only be accessed when having access to the correct

decryption key. In Sovereign, the controller is maintaining all encryption and decryption

keys and allows authorized entities to obtain required keys. This reduces access control to

maintaining the access of corresponding decryption keys. For example, the decrypt-policy

“bedroom AC can read the temperature” is written as follows:

</alice-home/AirCon/bedroom, decrypt, /alice-home/TEMP/DKEY>

The subject name /alice-home/TEMP/DKEY represents the decryption key to the content pro-

duced under the temperature service.

Encryption and decryption keys are distributed during the entity bootstrapping process.

However, keys can be renewed or changed (e.g. for access right revocation purpose), and

hence, entities need to securely retrieve the updated keys from the controller. In Sovereign,

decryption keys are encrypted for every authorized entity using the shared secret between

an entity and the controller. Those secured decryption keys can then be retrieved using

Interest-Data exchange. Renewed keys can also be kept in a storage component to make the

smart home system resilient against temporary controller failures.

4.1.5 Integrating Sovereign Framework with Pub/Sub

The core implementation idea of Sovereign is to use a publish-subscribe (pub/sub) commu-

nication module that encapsulates naming, security, and networking primitives in one API.

38

Encryption Keys Signing Key

NDN Data
packet

NDN Data
packet

cmd or
content

cmd or
content

Security
Policies

Naming
Conventions

Decryption Keys Trusted Certs
Application

Logic
Broadcast
Network

Sovereign
Framework

2

1

3

Name

Encrypt

Wrap

Sign

Verify
4

Unwrap

Decrypt
5

Pub
APIs

Sub
APIs

Figure 4.3: Workflow beneath the pub/sub API

Pub/sub is a messaging pattern that categorizes messages into semantically meaningful top-

ics and is often seen in the context of IoT. Message producers (called publishers) publish

messages to topics without knowing the set of message consumers (called subscribers). Sub-

scribers choose to receive messages under pre-defined topics without the need to know the

actual message producers. Pub/sub is used for two main reasons. First, pub/sub is data-

centric which matches the data-centric networking and security design of Sovereign. Second,

pub/sub has been widely adopted in existing IoT frameworks, and hence, adopting pub/sub

provides convenience for developers.

Pub/sub API is directly built over Sovereign’s D2D communication as presented in the

previous section by handling name prefixes as topic identifiers. That is, subscribers use name

prefixes to decide whether a message is under a certain topic or not. For example, a message

carrying temperature data of the bedroom is mapped to the name prefix /home/TEMP/CON-

TENT/bedroom. This name prefix is further used as the pub/sub topic identifier. In this

way, producers that publish content or commands under a topic is to generate Data packets

named under the corresponding prefix. Subscribing to a topic is implemented by issuing

Interests containing the topic’s name prefix to fetch relevant data.

As indicated in Figure 4.3, in Sovereign implementation, the pub/sub API embeds nam-

39

Lightweight NDN Utilities

Adaptation to Platform-specific network interfaces,
crypto support, and time support

C
or

e
Li

br
ar

y

Applications
Pub/Sub

Other
Modules

Security
Policies

Entity
Bootstrapping

Sovereign
Framework

So
ve

re
ig

n
SD

K Naming
Conventions

Figure 4.4: Structure of Sovereign’s smart home SDK

ing, security, and networking considerations to make them transparent to developers. We

illustrate the underlying workflow with an example, where an application issues a command

to set the bedroom temperature to 70°F. After calling the publish API, Sovereign defines

the command name based on application parameters following naming conventions (Ê).

Sovereign identifies an encryption key according to the topic and encrypts the payload (Ë).

Further, the API wraps the command name and the encrypted payload into a Data packet.

Finally, the API uses the application’s private identity key to sign the Data (Ì) and makes

it available on the local network. On the receiving end, after subscribing to a topic, the API

automatically fetches the relevant Data packet. Once a Data packet is received, Sovereign

verifies its signature and checks against security policies (Í). In the next step, the Data

is decrypted with the corresponding decryption key (Î). Once verified and decrypted, the

command is delivered to the application.

Sovereign is made available as an open-source, cross-platform software development kit

(SDK). To allow use over constrained devices, the SDK is built on C and uses static memory

allocation only. The SDK’s structure is visualized in Figure 4.4. The core library imple-

ments the Sovereign framework. As indicated, the only components exposed to developers

is the Entity Bootstrapping and the Pub/Sub API. Other components are transparent for

developers. Moreover, the SDK includes an adaptation layer making the core library work

across different platforms and communication media. So far, the adaptation layer is tested

40

for platforms including Linux/Unix, RIOT OS [BHG13], and Nordic NRF boards [Nor21].

Regarding connectivity, the adaptation layer allows using Bluetooth, IEEE 802.15.4, and the

legacy TCP/UDP used as link layer protocols.

Also, the Sovereign SDK includes a standalone NDN stack that is lightweight enough

for constrained devices. This implementation is required since the official NDN library and

forwarder — ndn-cxx [Ndn21] and NFD [NFD21] — are not designed for being used on con-

strained IoT devices. We have verified its compatibility to the official NDN implementation

with full examination.

To be used in real smart home products, device vendors and application developers need

to program with Sovereign SDK and write the program together with all dependencies to

the hardware platform (i.e. the program memory on the microcontroller).

4.1.6 Evaluation

We first discuss how Sovereign can work with security and privacy. Thereafter, we evalu-

ate Sovereign’s performance and it shows Sovereign’s low overhead, low memory and flash

requirements, and the ability to work with constrained devices.

Privacy and Security Assessment: Case Study and Comparison: We assess Sovereign’s

privacy and security by analyzing packet flows in two real-world applications. We select two

simple yet representative open-source applications [Sma20, Sma15] taken from the official

SmartThings GitHub repositories [Sma21], and realize the same functionality in Sovereign.

The first application is designed for a smart switch and the second is an automation applet

turning on a switch when a contact sensor is touched. The code snippets of the original

programs (code block 1 & 3) and their Sovereign-based equivalents (code block 2 & 4) are

compared in Figure 4.5. The switch device application changes its own state to “on” when

it gets a turn-on command, and the automation applets subscribe to the state of a contact

sensor and turn on the switch when the contact sensor is touched.

41

In the SmartThings device application (code block 1), the first line of the code securely

connects the device to the home’s cloud-backend. After that, the cloud recognizes the new

device, learns its profile, and registers it to the device database for the home on the cloud.

In contrast, the first line of the Sovereign device application (code block 2) bootstraps the

device to a local controller. All sensitive information that is transmitted in the bootstrapping

phase stays in the local network and is protected by encryption.

The first line of the automation applet of the SmartThings (code block 3) and the

Sovereign application (code block 4) subscribes to a given topic. However, the underlying

operations differ: the SmartThings application notifies the cloud backend about its interest

in the given service, while the Sovereign application starts listening to data published under

the given name prefix in the home network. Similarly, when the SmartThings application

turns on the switch, the command message is sent to the cloud backend, where the command

is verified and sent back to the switch in the local home. In contrast, publishing a command

in Sovereign means producing a new Data packet and making it accessible in the local home

network.

Reflecting the above comparison, we see that Sovereign provides the same functionality

as cloud-based smart homes via local and secure communication. The home activities and

data are not accessible to the cloud unless users explicitly grant access rights to a cloud

service.s

Latency and Memory Benchmark: To evaluate the performance of Sovereign, we mea-

sure the latency and memory overhead of the operations entity bootstrapping, content de-

livery, and command delivery. We conduct our evaluations using a Intel Core i7 laptop, a

Raspberry Pi 3B (RPI) and an nRF52840 board [Nor21] that mimic smart home entities with

different capabilities. RPIs are widely used in IoT projects and often used for prototyping.

Those boards are equipped with an ARM Cortex A53 @1.4GHz processor and 1GB RAM.

We classify the evaluated nRF52840 chip with its 32-bit Cortex M4@64MHz CPU, 1MB

42

Sovereign Device (C) Code block 2 SmartThings Device (C) Code block 1

SmartThings SmartApp (Groovy) Code block 3 Sovereign App (C) Code block 4

st_conn_init(credential, device_info);
st_cap_cmd_set_cb("on", callback);
...
void callback(evt) {
 event = st_cap_attr_create_string("switch", "on");
 st_cap_attr_send(event);

bootstrapping(credential, device_info);
sub_to_command(SWITCH, callback);
...
void callback(context, event) {
 ps_event_t state = ps_event_init("state", "on");
 pub_content(SWITCH, state);

subscribe(contact, "contact.open", handler)
...
def handler(evt) {
 switches.on()
}

sub_to_content(CONTACT, callback)
...
void callback(context, event) {
 if (event.id=="state" && event.payload=="on")
 pub_command(SWITCH, "/", "on");

Figure 4.5: Code snippets in SmartThings and Sovereign

ROM, and 0.25MB RAM2 as constrained hardware. The experiments with RPI is over WiFi

connectivity and use a laptop equipped with a Core i7 processor as the Sovereign controller.

Evaluation involving the nRF52840 is conducted over IEEE 802.15.4 and uses a simplified

controller installed on another nRF52840.

Note that in the experiments of content and command delivery in Sovereign, we first

used the controller to bootstrap a publisher and subscriber application, respectively, and

then brought down the controller. Thus, the communication happens in a D2D manner

without a controller involved, showing Sovereign’s ability to continue operation even when

the controller is temporarily down.

Latency of Common Operations: In the first experiment, we compare the latency of

the above-described operations in the Sovereign and the AWS IoT framework. Therefore, we

deploy a Sovereign Controller in the local wireless network. For the AWS IoT implementa-

tion, the location of the cloud-based AWS IoT controller is not under our control. However,

to provide fair conditions, the wireless network is equipped with high-bandwidth Internet

connectivity.

The leftmost bar-group in Figure 4.6 visualizes the latency for entity bootstrapping.

2We acknowledge that a part of current IoT devices shows lower capabilities. However, market stud-
ies [Mar21, IC 15, IC 18a, IC 18b, EE 13] have seen the market turning to 32-bit microcontrollers. Hence,
we assume the nRF52840 as an appropriate candidate for future smart home systems.

43

Bootstrapping Sub:
Content Delievery

Pub:
Command Delivery

0

200

400

600

800

To
ta

l L
at

en
cy

 (m
s)

487.62

93.20
139.54

458.60

245.17 248.85

894.00

271.40

489.00

AWS IoT Device, WiFi TLS
Device:cortex A53 1.4GHz
Sovereign Device, WiFi Multicast
Device:cortex A53 1.4GHz
Sovereign Device, IEEE 802.15.4
Device:cortex M4 64MHz

Figure 4.6: A comparison of user-perceived latency between Sovereign and AWS IoT

Here, no significant difference between the RPI implementations of Sovereign and AWS IoT

can be observed. The slower nRF52840 chip requires about twice as much time. Here, we

want to highlight the use of heavy-weight cryptographic operations, such as key generation,

that consume a significant amount of time on the constrained hardware.

The advantage of keeping communication local becomes clear when focusing on content

and command delivery. Sovereign’s RPI implementation is about 62% faster in content

delivery and 42% faster in command delivery than the AWS IoT implementation on the

same hardware. The constrained nRF52840 chip has about the same latency as AWS IoT

for content delivery. For command delivery, the constrained device is slower than the RPI’s

AWS IoT implementation. However, a latency staying below 500 ms is assumed to be still

practical for use in smart homes.

Execution Time Breakdown: A breakdown of Sovereign’s runtime into individual opera-

tions is provided in Figure 4.7. The visualized operations are performed when preparing Data

before broadcasting to the network and Data processing after receiving. This includes dig-

ital signature creation and verification (ECDSA), content encryption and decryption (AES

CBC), security policy checking, NDN packet encoding/decoding, and other cryptographic

44

en
cry

pt&

de
cry

pt
pk

t s
ign

&

sig
 ve

rify

en
cod

ing
&

de
cod

ing

oth
er

cry
pto

op
era

tio
ns

pu

b:

en
cry

pt pu
b:

pk
t s

ign pu
b:

en
cod

ing sub
:

de
cod

ing sub
:

sig
 ve

rify sub
:

sch
em

a
sub

:

de
cry

pt

0.1

1.0

20.0

100.0
300.0

0.05

6.95

0.03

6.12

0.02

2.31

0.01 0.01

2.76

0.01
0.03

0.16

15.62

0.09

14.51

0.09

7.53

0.08

0.02

8.19

0.03

0.12

1.94

267.82

0.57

215.92

0.28

119.33

6.62

0.07

127.51

11.05

1.35

Bootstrapping

Pu
b/

Su
b

Ti
m

e
El

ap
se

 (m
s)

App: core i7 2.2GHz Device: cortex A53 1.4GHz Device: cortex M4 64MHz

Figure 4.7: Breakdown of the execution time in Sovereign

operations (including ECDH, KDF). The results show that asymmetric cryptography con-

sumes most of the computation time. This trend is observable across all evaluated devices.

ROM and RAM Footprint: We programmed an nRF52840 chip using RIOT OS [BHG13]

for measuring Sovereign’s memory footprint. Table 4.2 reports the size taken by individual

Sovereign modules. All the main modules together require less than 50 KB of RAM and

70 KB of ROM. This indicates Sovereign’s ability to be used on resource-constrained smart

home devices.

4.2 FITT: DDoS Mitigation with NDN

The majority of the materials contained in this section were modified or quoted verbatim

from [ZVK21].

Fine-grained Interest traffic throttling, or FITT, is an NDN based DDoS mitigation

system. The core idea of FITT is to utilize NDN’s stateful forwarding to traceback the

attack resources and use names to achieve fine-grained traffic throttling. While the stateful

forwarding itself is not part of the data-centric security model, it is designed to forward named

45

Program/Modules ROM Use RAM Use

Subscriber in total 62KB 47.3KB

Publisher in total 52.4KB 38.2KB

Application 1.8% 7.3%

High-level Modules 20.7% 34.2%

Utilities 3.3% 14.4%

Crypto Tools 25.1% 0.2%

Network Forwarder 24.1% 25.0%

OS and Adaptation 25.1% 18.9%

Table 4.2: ROM and RAM consumption of Sovereign applications

secured data in the network and thus closely coupled with NDN’s data-centric security model.

4.2.1 Background and Motivation

DDoS attacks have bothered the Internet for decades and often utilize intrinsic properties of

the TCP/IP architecture [OSZ20, prn18]. While the TCP/IP networking model has achieved

great success, the other side of its design has also been abused by attackers to launch DDoS

attacks. The ever-increasing size, frequency, and sophistication of DDoS attacks call for new

approaches that can be partially or fully deployed imminently. We propose that this urgent

need may accelerate our consideration of a new Internet architecture, and that evidence

shows that there may now be economic incentives for large operators to upgrade their existing

infrastructures to embrace it.

Indeed, starting with early DDoS attacks (e.g., attacks from the Trin00 botnet in 1999

[CER99]) through to recent attacks from the Mirai botnet [AAB17], the remediation tech-

niques used in today’s Internet suggest that our defensive tactics may not be fundamentally

keeping pace with attackers [OSZ20]. Rather, with attacking botnet nodes swelling in size to

hundreds of thousands, and even millions, attacks have grown large enough that their attack

volume rivals provisioned capacity of DDoS mitigation providers. The Mirai botnet serves as

46

a quintessential example, in that it was used to launch some of the largest DDoS attacks in

history, and it did so using compromised devices that primarily included Internet of Things

(IoT) devices and household appliances that were both easily discoverable and poorly pro-

tected [AAB17]. We note that DDoS has evolved to be more distributed than ever, and

to increasingly using application-level semantics (e.g. reflective amplification attacks using

DNS, NTP, memcached, etc.). On the other hand, service operators, providers, and mitiga-

tion services [Aka19, Neu21, Clo21] have had little recourse but to centralize defenses and

backhaul or black-hole undisrupted attack traffic (“packet love”) in large DDoS mitigation

service networks. These DDoS mitigation approaches haul offending packets deeper into the

network and require an ever increasing amount of deep packet inspection and state in terms

of flow semantics to filter out attack packets, thus they do not scale well.

In this work, we examine the basic functions in NDN, that can address the principle

weaknesses in today’s IP networks and try to mitigate DDoS with properties provided by

NDN. Importantly, to allow this to be used in real-world scenarios, the new approach should

be incrementally deployable and align the incentives of existing service providers.

4.2.2 TCP/IP Architecture as the Root Cause of DDoS

Most DDoS attacks that are launched on today’s Internet are made possible by utilizing

features in the TCP/IP network architecture. Previous work [JWS03, BCR16, YWA05,

HG04, Ros14] observed that DDoS attacks often exploit the following specific properties in

IP:

• Push-model Communication: Any Internet node can send packets to any other IP

address. This leaves DDoS attack victims with no way to stop the attack traffic.

• Destination-based Delivery : Packet delivery is solely based on the destination address

and there is no source address validation by default. Thus, source IP addresses can

easily be misattributed, or spoofed, which is a primary feature used by volumetric

47

reflective amplification DDoS attacks [OSZ20].3

• Limited Expressiveness in TCP/IP protocol stack : IP addresses, even with transport

port numbers, cannot expressively describe the semantic characteristics of application-

layer traffic, which makes it difficult for DDoS defense mechanisms to inspect traffic

to identify attack packets.

Moreover, [HG04] proposed that a DDoS resilience architectural would need: 1. limiting

the access to a server based on the server’s capabilities, 2. source address authentication

to prevent source address spoofing, 3. separating client and server address space to prevent

unwanted traffic from client to client and server to server, and 4. building symmetric traffic

flows to prevent reflection attacks at the network layer.

4.2.3 DDoS in NDN

In NDN, attackers can only attempt to DDoS a target by flooding it with Interests because

attackers cannot actively send Data packets to a target if the target has not sent correspond-

ing Interest packets beforehand. Specifically, inspired by the work [GTU13], we categorize

Interest packets used in DDoS attacks into three types according to (i) whether the Interest

is valid, and if valid, (ii) whether or not the data requested by the Interest is dynamic (i.e.,

generated upon the Interest).

Valid Interest for static data (Valid-S) Valid-S Interests fetches Data packets that

can be cached, e.g., Data packets for a CSS file or a video chunk. In NDN, Valid-S attacks

can be mitigated because multiple Interests asking for the same data can be aggregated and

satisfied by the in-network cache. NDN’s intrinsic mitigation is sufficient unless attackers

flood a huge amount of Interests traffic from a large spectrum of names.

3This type of DDoS attack has resulted in the largest attacks seen on the Internet to date.

48

Valid Interests for dynamic data (Valid-D) Valid-D Interests request data that is

dynamically generated by producers upon the arrival of the Interest packets, for example,

Interest packets used in a remote procedure call. This is usually reflected by a dynamic and

unique data name carried by Interest packets. Since the Interest’s name is customized and

the Data is generated in real time, hardly any Interests arriving at a forwarder would hit

cache or an existing Interest with the same name.

Invalid Interests (Invalid) An invalid Interest packet will not fetch an Data packet

back because of its unrecognized format, unverifiable signature, incorrect application-layer

content, etc. This type of Interest is mostly useful to malicious adversaries because legitimate

applications can generate correct Interests following certain naming conventions. A possible

way to generate such Interests is to append non-existent name components (e.g., randomly-

generated garbled bytes) to valid server prefixes.

When Valid-D and Invalid Interests are used in a DDoS attack, since their names are

arbitrary and can hardly be satisfied by the cache, additional DDoS mitigation services are

needed over NDN.

4.2.4 Design of FITT

We demonstrate by a new DDoS mitigation solution over NDN, Fine-grained Interest Traffic

Throttling or FITT, that NDN’s architectural changes, even when incrementally deployed,

can make DDoS attacks fundamentally more difficult to launch and less effective. FITT

leverages the NDN design to enable the network to detect DDoS from victim’s feedback,

throttles DDoS traffic by reverse its exact paths through the network, and enforces control

over the misbehaving entities at their sources.

In a nutshell, FITT reacts to feedback from a victim, traces back the specified traffic flows

by checking NDN’s forwarding state, and enforces traffic throttling at the edge. The design

is enabled by two major architectural properties of NDN. (i) The named traffic allows an

49

expressive way for a victim to specify the attacking traffic and for FITT to make fine-grained

throttling. (ii) The stateful forwarding provides run time insights into ongoing traffic flows

so that FITT can trace the traffic to precisely identify attackers.

S R1

R3

R2

R5

R4

C1
C2

C3

C6
C5

C4

/com/target
/service1

DDoS traffic
“Good” traffic

Figure 4.8: An example topology of NDN Interest flooding attack

FITT works in three main steps as shown in Figure 4.9. We illustrate the three steps

with the example topology in Figure 4.8,

Step 1: Detection: When server S’s service receives traffic more than the configured

threshold, it sends out the feedback to its downstream router R1. Once receiving the feed-

back, R1 parses the feedback and triggers the FITT reaction based on the attack type.

Step 2: Traceback: In order to identify attacking sources, R1 checks its forwarding state.

Using names carried in the feedback from S, R1 can identify the attacking traffic flows by

their names and then know the downstream routers (R2 and R3) from which the traffic is

from. R1 notifies the downstream routers and R2 and R3 will perform similar procedures

as R1 does. In this way, FITT reversely traces the attack traffic from S all the way to edge

routers R2 and R4 where exact traffic senders are connected.

Step 3: Throttling: The edge routers will first notify these clients and then perform

Interest throttling on suspect downstream interfaces within the specific prefix reported by

S. During the throttling, an edge router will check whether a client has changed its behavior

or not (i.e. whether it lowers down its sending rate to the required value under the specified

prefix). The router can then relax or reinforce the limit, accordingly.

Multiple FITT reactions can be triggered at the same time for different traffic prefixes

50

Forwarding
State

FITT

Forwarding
State

FITT
queryquery

FeedbackWWW

Hop-by-hop
Feedback

Propogation

FITT Router

…
config

Throttle

FITT Edge Router

Detection Tracing Throttling

Clients

Server

Figure 4.9: An overview of FITT system

(located on the same server or different servers) and different types of attacks. On the edge, if

traffic for a specific prefix from a suspect downstream interface is being throttled by multiple

FITT instances, a minimum allowed traffic value will be taken.

Since the mitigation is triggered by the victim’s feedback, FITT can react immediately

after the DDoS attack. The latency for throttling to start is only a one-way trip time (0.5

RTT) from the victim server to clients. In addition, since the whole process entirely operates

over the existing NDN forwarding plane, there is no man-in-the-loop for DDoS mitigation

with FITT.

4.2.5 Incremental Deployment

We further demonstrate that service providers may implement NDN/FITT on existing CDN

nodes as an incrementally deployable solution to effectuate the application level remediation

at the sources, which remains unattainable in today’s DDoS mitigation approaches.

In this work, we observe that the suitability of NDN’s architecture to perform DDoS

remediation is not just a parallel benefit to its suitability to performing CDN functions;

rather, we posit that existing CDN deployments are opportune infrastructure to enable broad

deployment of NDN. Importantly, many CDNs’ existing roles as MaaS providers suggest the

potential alignment of costs with incentives to performing both CDN and MaaS.

51

• First, an upgrade of a CDN to support NDN could provide a synergistic benefit to

Internet services that want protection from DDoS, and to the CDN/MaaS provider.

Multiple aspects of the synergy that exists between DDoS mitigation and NDN. For

example, one of the devastating aspects of volumetric DDoS attacks occurs when at-

tack traffic is backhauled from distributed sources towards destinations (whether the

destinations are victim services, or even to MaaS scrubbing centers) [OSZ20]. Deploy-

ment of NDN across a CDN/MaaS would let that provider shed attack traffic at the

edges before it starts to aggregate across transit links.

• Second, CDN/MaaS providers already shoulder the computation and network require-

ments that NDN would require. For the TCP/IP Internet, CDN/MaaS providers have

already been terminating TLS connections and proxying connections from clients to

service infrastructures. An NDN upgrade would fit the operational footprint that large

CDNs already have, would not necessitate the deployment of additional resources, but

would also fundamentally enhance DDoS service offerings.

• Furthermore, among the properties of NDN’s data-centric architecture is its inherent

capability to cache data near its consumers, architecturally. This fundamental advan-

tage is poised to not only be a pivotal feature, but also a deployment incentive for large

Content Delivery Networks (CDNs) providers. In today’s TCP/IP Internet, CDNs are

vast networks and deployments that operate as overlay services for end-users. CDNs

exist in TCP/IP networking (above the architectural layer) to efficiently deliver con-

tent to users today. CDN services typically involve large network infrastructures and

deployments. They often perform caching of content to locations that are geographi-

cally distributed, as well as geographical load-balancing of requests from clients so that

network latency can be minimized. In today’s Internet CDNs exist as overlay technolo-

gies, and some have proposed that NDN is well suited to implement these functions

in the network architecture, itself [CPZ16, JB14, MCC14]. Furthermore, many oper-

ational CDNs, today, also perform DDoS mitigation offering commercial DDoS/MaaS

52

services: Akamai [Aka19], Cloudflare [Clo21], and Neustar [Neu21] to name a few.

The resulting NDN network would have global scope and in-network caching in the

topologically distributed regions. In general, incremental deployment models become more

realistic when they align their costs with incentives. That is, those who deploy new mech-

anisms are more likely to do so when they anticipate direct benefits from doing so. By

contrast, deployments like ingress and egress filtering (BCP-38 [FS00] and BCP-84 [BS04])

illustrate slow adoption, arguably, because those deploying them do not gain any direct ben-

efits. Conversely, service providers already expend resources and money to combat DDoS

by either provisioning large amounts of excess bandwidth or by contracting with commercial

DDoS mitigation providers [Aka19, Neu21, Clo21]. Service providers whose applications may

already be in a position to benefit from migrating to NDN’s architecture would gain addi-

tional benefits by deploying NDN with FITT and thereby being able to shed large amounts

of DDoS traffic.

Client End-Point
Network (NDN Enclave)

Service Operator
Network (NDN Enclave)

No Direct
Access
Allowed

Web Service
(DDoS Target)

CDN
node

CDN
node

CDN
node CDN

node

CDN
node

Client NDN
Gateway

NDN
Control

NDN
Control

NDN
Enclaves

NDN
Enclaves NDN Overlay

using CDN nodes

Service NDN
Gateway

NDN Tunnel
WWW

Figure 4.10: Incrementally deploy NDN and FITT over today’s CDN

Therefore, we propose an incremental deployment (see Figure 4.10) that leverages CDN

to connect NDN routers located at the edges of the network. The two ends speaking NDN

are enough for FITT to effectuate the DDoS mitigation. This means that our approach

requires NDN gateways on both sides of the CDN overlay: the client end-points and the

53

service provide/operator side. On the client end-point, the NDN gateway can both forward

traffic from existing NDN devices and translate at the application level using an application

proxy traffic from traditional TCP/IP devices. Such a translation is akin to having an

application proxy (i.e. web proxy) and it would allow the client NDN gateway to perform

enforcement without having to worry about packet classification or deep packet inspection.

On the service operator side, the NDN gateway can serve traffic directly to Web Service.

What’s more, service operators who migrate their services to NDN bolster each others’ NDN

deployments, as those clients independently augment each others’ deployments (through

facilities like shared caching and shared routing infrastructure). In particular, we observe

that serendipitous IoT deployments of NDN, which may already be underway, could benefit

other services whose providers have (or will) independently embraced NDN for this reason.

That is, an NDN-enabled service may shed DDoS traffic from would-be attack nodes that

might otherwise be bots in Mirai. By enabling NDN at the edges in home routers and IoT

deployments would place the FITT mitigation machinery very near to some of the Internet’s

most voluminous DDoS sources for all NDN applications (not just IoT). We believe that

it is demonstrably feasible for independent service operators to overcome network protocol

ossification and migrate (at least portions) of their production traffic to NDN. Furthermore,

we show later in this section that the FITT/NDN deployment outperforms existing CDN

caching schemes because it is performed as a network function deeper into the stack. Thus,

by enabling NDN at the edges, we get both performance and security benefits without

sacrificing functionality.

The deployment of NDN/FITT may also not need to bother the change of existing end-

point applications running in NDN enclaves. To be more specific, the gateway of NDN

enclaves can be an NDN forward/reverse proxy. For clients, e.g., IoT devices, to talk to

a remote service, the client’s gateway server plays the role of a forward proxy which turns

application-layer request (e.g., HTTP GET request) into an NDN Interest packet and sends

it out to the server over the NDN tunnel; while for the service provider side, the server

54

gateway router serves as a reverse proxy parsing NDN Interest packets back to normal re-

quest. When servers send back the response, the process is similar. Given the commonalities

between NDN’s Interest-Data exchange and today’s widely-used request-response model in

application layer protocols (e.g., HTTP, RPC), such proxy and reverse proxy are deployable

and the cost can be reasonable because it does not require any hardware change – all NDN

proxy deployment is software installation in user space.

Performance Comparison of FITT vs CDNs: We simulated a topology similar to

Figure 4.10 where a CDN infrastructure is used for static and dynamic page delivery for

web services. In the pure CDN scenario, the CDN proxies are running the latest version of

Squid [The13] and for our approach, the same CDN proxies run a version of our FITT proto-

type on top of NDN. Our aim was to be able to evaluate the computation and communication

overhead of NDN forwarding daemon (NFD), an open-source NDN network forwarder, and

Squid, one of the most widely used web proxy systems. Specifically, we performed multiple

simulations using today’s practice of MaaS and NDN/FITT’s DDoS mitigation with the

same hardware settings. In our experiments, we used computers equipped with Intel Core

i9 4.6GHz processor with 32GB DDR4 RAM. We also used the same number of clients re-

questing the same amount of data and computation: six (6) clients requesting both static

content and dynamically-computed content of 2KB at the same rate simultaneously.

As shown in Figure 4.11, we first present the CPU and memory use of a single-thread

Squid and NFD/FITT under the same load. The plot indicates that the combination of

NFD with FITT has an advantage in terms of resource consumption when compared to

Squid: under the same load of traffic, Squid consumes an estimated of about five times (5x)

more memory than FITT. We observed a similar trend when we measured the computation

footprint on each of the CDN proxies: FITT requires a mere 20% of the processing time when

compared to Squid. In addition, we observed the total amount of traffic at the networking

layer (IP) involved assuming a CDN proxy running Squid receiving TLS traffic vs NDN traffic

(similar to Figure 4.10. In both cases, we made the assumption that traffic is forwarded over

55

0.0 0.2 0.4 0.6 0.8 1.0

CPU time/req
@Static Req

CPU time/req
@Dynamic Req

Heap Memory
@Static Req

Heap Memory
@Dynamic Req

IP packets/req

Bandwidth/req

0.35ms
0.08ms

1.03ms
0.22ms

6.66MB
1.14MB

7.35MB
1.16MB

200.01
18.19

58.86KB
20.89KB

CDN (Squid, TLS Traffic) NDN (NFD, NDN over IP)

Gray bar group: a vanilla CDN proxy running Squid; Black bar group: a prototype of FITT on top of

NDN. (i) Heap memory consumption for static and dynamic requests (static requests will be satisfied by

both CDN cache and NDN cache while dynamic request will be forwarded by CDN/NDN proxy). (ii) CPU

consumption for static and dynamic requests. (iii) Number of packets and traffic received (TLS over

traditional TCP/IP versus FITT tunneling NDN packets from an NDN enclave)

Figure 4.11: A comparison between Squid CDN and FITT on top of NDN

a single hop between the CDN and the MaaS scrubbing center. This is the worst case

scenario for us because, in practice, MaaS scrubbing centers can be deeper into the network

in a centralized location and several network hops away from the edge CDN proxies. Even

under that assumption, our experiments indicate that in order to fetch the same amount

of content and computation results, Squid over TLS requires around ten times (10x) the

amount of packets resulting in almost three times (2.8x) bandwidth overhead compared

with NFD/FITT over IP-overlaid NDN. As we mentioned, since the MaaS service requires

TLS-terminating traffic forwarding on both the CDN proxies and MaaS scrubbing centers,

56

the computation and communication overhead can be much higher than what we report here

for the vanilla CDN implementation making FITT a much more desirable option.

4.2.6 Evaluation

Besides the prototype implementation over the latest stable version of NFD, we also imple-

ment FITT in C++ over ndnSIM [MAZ17], which is an NDN simulation platform based

on NS-3. We first demonstrate NDN’s DDoS resilience to valid static Interest flooding and

then evaluate FITT under different types of attacks. The simulation results show that after

the DDoS starts, FITT can effectively control the traffic to the victim as expected within

seconds (less than 2 seconds under our simulation settings), and ensure that over 99% of the

attack target(s) incoming traffic is from legitimate clients after a short period of time.

In addition, we simulate the scenarios when (i) multiple DDoS mitigation instances are

happening at the same time, (ii) different traffic flows are presented and only one of them

is throttled, and (iii) attackers are rogue and follow the DDoS control of FITT. The results

show that FITT can perform fine-grained DDoS mitigation and handle comprehensive attack

scenarios.

Simulation Topology: We simulate the incremental deployment of NDN/FITT using a

CDN as an overlay between NDN enclaves. As shown in Figure 4.21, the blue nodes are

CDN nodes that are aware of NDN and FITT, the gray nodes are gateway routers of NDN

enclaves. Behind each gateway router, we simulate 10 compromised IoT devices and 2 honest

IoT devices. Since FITT follows a divide-and-conquer strategy in traffic throttling, the scale

of the network topology does not affect the evaluation results of FITT much. We make the

service globally reachable, which indicates all users have the means to learn the name and

express Interest packets towards the service. For sake of simplicity, we use the prefix P to

represent the service in the rest of the section.

Simulation Result Notation: In the simulation result plots, we use the red dashed line

57

(a) Interest Aggregation (b) In-network Cache

Simulation Settings: NDN deployment without FITT. Each attacker (60 in total) starts sending Valid-S

attacking Interests at 100 pkt/s from the second 3 with an available number of data names 500 and 1000,

respectively.

Figure 4.12: NDN’s DDoS Resilience to Valid-S Interest Attack

to represent attackers’ sending rate (RPS), the blue solid line to represent DDoS target’s

receiving traffic rate (RPS), the green dot-dashed line to represent legitimate clients’ sending

rate (RPS). Therefore, when the blue solid line meets the green dot-dashed line, all traffic

arriving at the DDoS target is from legitimate clients. The area below the red dashed line

and above the blue solid line represent the DDoS mitigation provided by FITT over NDN.

NDN: Resilience to Valid-S Interest Flooding: Figure 4.12 demonstrates NDN’s

DDoS resilience to static (Valid-S) Interest flooding with NDN’s intrinsic properties, i.e.,

Interest aggregation and in-network cache. To be more specific, we first disabled cache in all

routers so that the result will only be affected by NDN’s Interest aggregation. As shown in

Figure 4.12a, NDN can withhold traffic from attackers (red dotted line) to the server (the

blue solid line). The more available names are used, the less traffic NDN can retain. We then

introduce the cache capacity of 200 data packets in Figure 4.12b. It is apparent that the

number of Interests reaching P decreases because of the caching capacity, which is because

intermediate nodes along the path will serve future same Interests with cached Data (the

freshness of cached Data is 4 seconds in our simulation).

58

(a) Invalid Interest DDoS (b) Legitimate Traffic Ratio

Simulation Settings: NDN deployment with FITT. Each attacker (60 in total) starts sending invalid

Interests at 100 pkt/s from the second 3. Legitimate clients’ sending rate is 40 pkt/s starting from the

second 0.

Figure 4.13: FITT mitigation of invalid Interest attack

The two figures indicate that the effect of Interest aggregation and cache is lower when

an attacker can use a bigger set of Interest names to attack the victim. This is because the

larger the name set, the smaller the chance of two Interests carrying the same name, and

the smaller the chance to hit a previously cached Data packet.

FITT: Invalid Interest Attack: We first study FITT’s performance against Invalid

Interest (Invalid) DDoS attack. As shown in Figure 4.13a, initially, P only receives Interests

from legitimate clients (green dot-dashed line). After 3 seconds, attackers start the DDoS by

sending Invalid Interests (the red dashed line) to P . As depicted by the plot, P ’s incoming

traffic line (blue solid line) immediately goes up after the attack but soon goes down and

merge the legitimate clients’ outgoing traffic line (green dotted line). Therefore, FITT can

eliminate the invalid Interest DDoS traffic in a short time. The effectiveness is because

in invalid Interest DDoS attacks, FITT can accurately identify attackers by InvalidNames

carried in feedback messages and throttle their attack traffic. Figure 4.13b shows that after

FITT reaction, all the traffic received by P is from legitimate clients.

FITT: Valid Interest Flooding: We then simulate valid Interest flooding. To remove

59

the effect of in-network cache, we disabled all router’s cache. As such, Valid-S and Valid-D

Interest flooding become the same because all of them will arrive at the DDoS target P . The

results of Valid-D Interest flooding are shown in Figure 4.14.

(a) Valid-D Interest DDoS (b) Legitimate Traffic Ratio

Simulation Settings: NDN deployment with FITT. Each attacker (60 in total) starts sending Valid-D

Interests at 100 pkt/s from the second 3. Legitimate clients’ sending rate is 40 pkt/s starting from the

second 0. We let P ’s capacity be 1.5K RPS and RateLimitTimer be 3 seconds.

Figure 4.14: FITT mitigation of valid Interest flooding

(a) Two-victim DDoS attack (b) Fine-grained throttling (c) “Smart” attackers

Figure 4.15: FITT mitigation in different attack scenarios

Since the router cannot tell good traffic from bad traffic when DDoS starts, legitimate

clients are also limited. After receiving the FITT feedback messages, legitimate clients will

abide by the control placed and lower down their sending rate until the router determines

them to be legitimate and free the limits, explaining why the green dot-dashed line goes

down in the first several seconds of the attack and then back to the normal later. As for

60

attackers, as shown, the traffic received by the victim drops periodically (every 3 seconds),

which confirms the FITT’s reinforcement throttling: FITT will halve the limit on attackers

until all the attackers’ traffic to the reported prefix are totally blocked. At the end of

the mitigation, >99% of the Interests received by the victim are from legitimate clients

(Figure 4.14b).

FITT: Multiple Attacks to Different Prefixes: FITT is designed not only to handle a

single DDoS attack, but also comprehensive DDoS attacks, i.e., attacks to different prefixes,

starting at a different time and using different types of Interests. In this simulation, we

evaluate a more complicated attack scenario where half of the attackers attack service P

with Valid-D Interests starting from second 2 and another half attacks service P ′ with Valid-

S starting from second 4. We found the simulation results of scenarios when P and P ′ are

located on the same node or different nodes are almost the same. Figure 4.15a shows the

result when P and P ′ are running on the same server.

As shown, when multiple FITT mitigation instances take place, FITT can effectively

control the DDoS traffic from both attacks at the same time. For each victim server, the

incoming Interests are throttled in a similar way like that when there is only one victim

server under attack. Two servers’ incoming traffic lines quickly go below the threshold after

the attack started and soon merge the legitimate client traffic line, indicating that all the

traffic received by the two servers is from legitimate clients.

FITT: Throttling Granularity: In DDoS mitigation, collateral damage may ruin the

legitimate traffic sent from the compromised devices. FITT throttles Interest traffic at a

granularity of flow under a specific name prefix. We evaluate FITT in terms of the granularity

of the traffic throttling. We reuse the simulation settings of the two-victim scenario to let all

the attackers not only attack P with Valid-D Interests at 100 pkt/s but also keep the normal

communication with another service provider P ′ at the reasonable rate of 20 Interests/s. In

this case, the attacking traffic will overwhelm P but the legitimate traffic will not go beyond

the capacity of P ′. As shown in Figure 4.15b, compared with the two-victim scenario where

61

traffic to both P and P ′ will be throttled, in this simulation, FITT only squelches clients’

traffic under P while the traffic towards P ′ will not be affected.

FITT: “Smart” Attackers: Attackers may try to circumvent FITT’s traffic throttling

by complying feedback messages from edge routers temporarily and switching back to attack

mode later. However, when attacks switch back to a high sending rate, the traffic volume

will alarm the service’s pre-configured threshold again, which will in turn force the attackers

to lower down the Interest sending rate again. In this way, the FITT will be triggered

periodically when switches take place (Figure 4.15c). Consequently, the average attacking

traffic will be kept at a certain level where the service will not be spoiled, especially when

the threshold is properly set below the real capacity of the service.

FITT: Mixed Interest Attacks: We tune the attackers in the Valid Interest flooding

scenario to send both Valid-D and Invalid Interest packets to simulate a mixed Interest

attack.

(a) Mixed Interest DDoS (b) Legitimate Traffic Ratio

Simulation Settings: NDN deployment with FITT. Each attacker (60 in total) starts sending both

Invalid and Valid-D Interests at 100 pkt/s from the second 3. Legitimate clients’ sending rate is 40 pkt/s

starting from the second 0. We let P ’s capacity be 1.5K RPS and RateLimitTimer be 3 seconds.

Figure 4.16: FITT mitigation of mixed Interest flooding

As shown in Figure 4.16, compared with results of Valid-D Interest flooding scenario,

one obvious difference is that, after the attack starts, FITT will drop the traffic to be much

62

lower than P ’s RPS (black horizontal line). This is because, at the edge, an invalid Interest

attack will lead to a total block of the attackers, which cancels out the RPS from the valid

Interest attack mitigation. After a short period, FITT will place the limit to misbehaving

clients only and the legitimate clients will recover. In the end, FITT will only pass legitimate

traffic to P (Figure 4.16b).

4.3 DLedger: Distributed Immutable Logging

The majority of the materials contained in this section were modified or quoted verbatim

from [ZVM19].

DLedger is an NDN based permissioned distributed ledger. The main idea of DLedger

to make each record a piece of named secured data in the permissioned The records will

be directly used in the NDN based peer-to-peer network as the network layer packets, thus

allowing a coherent network and application design.

4.3.1 Background and Motivation

The open access and lack of trustworthiness among peers in public or permissionless blockchain

do not apply to permissioned application systems where strong trust relationships need to

be defined and enforced among a group of entities. For example, in a smart grid network

system, the participants like customers, device manufactures, power plants, public utilities,

and government agencies [The14] do not fully trust each other but share the same goal of

providing reliable power support. Under the same goal, each recorded data (e.g. logs of

executed or pending commands) should be strictly validated before it can be confirmed and

accepted by the system, e.g., the data generator is authorized against the policies and the

content is correct against some out-of-band or online query. Such a permissioned system

should also provide high throughput, low latency, and fault tolerance for application use.

The state-of-the-art permissioned blockchain system, Hyperledger Fabric [ABB18], im-

63

proves throughput and reduce latency by letting each transaction be executed only by a

subset of the peers and thus parallel execution. Nevertheless, the writing of each block into

the chain still remains a single head-of-link blocking process because Fabric uses one global

blockchain and employs a fully-synchronized, conceptually-centralized ordering service to

establish the order of transactions. In addition, Fabric uses TLS as the underlying commu-

nication channel for gossip and thus defeat the asynchronous communication and subject to

network partition.

Our work is inspired by an experimental private solar system where the customer energy

production/consumption records measured by the rooftop solar gateways were kept on a

cloud server for logging. These records will later be quoted by the business service provider

to bill its customers. However, since a centralized ledger is governed solely by the service

provider, this approach is often maligned by customers as well as other financial parties in-

volved in business systems for the following two reasons. First, the business service provider

who controls the server may tamper customer records to obtain unfair advantage. For exam-

ple, the solar system service provider may alter the energy usage data to maliciously charge

customers who cannot prove the existence of original recording data. Even worse, today,

there is little surveillance of such corruption. Second, cloud server outages and unstable IoT

network connectivity could also probably ruin the data availability.

4.3.2 Design of DLedger

We describe DLedger, an open-source permissioned distribute ledger system over directed

acyclic graph (DAG) data structure and Named Data Networking (NDN) as a secure and

asynchronous peer-to-peer (P2P) network. DLedger adopts a number of new concepts and

techniques:

• Parallel block writing and hard fork avoidance allowed by the DAG.

• Reference based endorsement allows blocks to be confirmed when a subset of the peers

64

endorse it according to the policy. This is similar to Fabric’s idea but differs in the

following two aspects. First, each block is endorsed differently per pre-defined policies.

For example, more critical logs require a larger number of endorsements or endorse-

ments from certain entities. Second, the endorsements themselves are also recorded by

the DLedger for auditing purpose.

• Co-design of communication layer using NDN and data layer using named secured

block. DLedger let each block a signed and named NDN Data packet. Each block is

a node in the DAG data structure in the data layer and is a self-containing unit that

can be cached, fetched, and verified in the communication layer.

• No special centralized functions.

• A number of endorsement policies to improve security of the system and prevent lazy

peers.

• Support of distributed programs (like smart contracts used in Ethereum) written in

standard programming language with Web Assembly Interface (WASI).

Our design favors availability (i.e., liveness) over consistency (i.e., safety) and provide

eventual consistency considering possible network partitions. Specifically, when a network

partition happens, critical blocks can be written into the system without any hard forks,

but depending on the endorsement requirement of different type of blocks, they may not be

confirmed until the networks rejoin.

Communication Layer: Entities utilizes Named Data Networking (NDN) for data dis-

semination and synchronization. All entities in a DLedger system, including the identity

manager, together form a peer-to-peer (P2P) network. Every record are generated with a

name, and other peers can fetch this data from NDN network directly using the name.

Entities advertise latest records to the whole P2P network. This process triggers both

periodically and after out-of-sync events (e.g., new record generation, sleeping mode, network

65

failures, etc.). After receiving the synchronization Interest packets, entities will fetch the

missing records and add it to their local ledger after record validation. Leveraging the

synchronization protocol, DAG is replicated and synchronized among all entities.

The benefits of using NDN as the P2P network brings a number of benefits:

• Being an NDN Data packet, each block can be fetched, cached, verified from any peer

in an asynchronous manner. This is entirely handled by the NDN protocol stack and

thus there is no need to design and implement it in the application logic (e.g., by

building a distributed hash table to keep a block-entity mapping and implementing a

open-access database of blocks on each node).

• NDN allows efficient Data multicast. When spreading a new block to the entire net-

work, conventional gossip network will cause a large number of duplicate transmission.

In NDN, this is done in a request-and-response way where only lightweight Interest may

be duplicatedly transmitted and the heavy block will be shared without any bandwidth

waste.

Data Layer: DLedger stores all records in a Directed Acyclic Graph (DAG) instead of a

single blockchain. Each vertex represents a record carrying its payload data while each edge

represents an approval made by a record to another. In DLedger’s DAG, a newly generated

record (vertex) will be placed adjacent (chained) to n (n ≥ 2) existing records in the DAG,

establishing the approvals from the new record to the previous ones. Tailing records are

those records not approved by any other records in the DAG.

When a peer P generates a new record R, the peer takes the steps as follows.

1. P randomly selects n tailing records generated by other peers.

2. It will then verify the validity of these records and the records directly or indirectly

approved by these records. If any of the n records is invalid, i.e. the record is malicious

or it approves an invalid record, P should drop it and repick another.

66

A

D

B

C

471c3e5 471c3e5

471c3e5

471c3e5

098c830
A

D

B

C

471c3e5

471c3e5

471c3e5

Figure 4.17: Endorsement ensures immutability in ReLiShare

3. The peer then adds the names of the n selected records and the application payload

into the new record R and sets R’s name to:

/DLedger/<Generator ID>/<Record Hash>

where <Generator ID> is P ’s unique ID and <Record Hash> is the digest calculated over

R. This will ensures the immutability of the blocks being referred by the current

block because a modification of payload will lead to broken references in later blocks

(Figure 4.17).

4. Finally, P appends a digital signature for block authenticity and integrity.

Each peer appends its new records into the DLedger after making approvals to other

peers’ records whose validity can be successfully verified. DLedger adopts a set of security

policies for record receivers to check the incoming records, preventing potential threats such

as spam attack and collusion attack, and misbehaving operations like laziness (contributing

nothing to system security).

Specifically, besides the verification of packet format, the content, signature, and block

creator’s authorization, DLedger also has the following rules.

• Interlock Rule: Creator may only attach new blocks to blocks generated by other

entities. This prevent a peer from maintaining a secret chain or DAG and greatly

increasing the verification time of blocks (because a verifier needs to verify a entire sub

DAG or chain.)

67

Confirmed
Records

Unconfirmed
Records

New
Records

A

B

C
D

Figure 4.18: DAG, endorsement, and consensus in DLedger

• Generation Rate Policy: Creator must generate block below a certain rate to prevent

flooding.

• Contribution Rule: Creator may only attach new records to relatively new unconfirmed

records. This prevent lazy peers from skipping verification of unconfirmed records.

Consensus Layer: The consensus on a record in DLedger is realized by enough number

of endorsements made by a number of entities. The number of endorsements from different

entities is called the weight of a record. As shown in Figure 4.18, the green block increases

the weight of record A and D, and indirectly increase the weight of B and C. When a record

gains sufficient number of endorsement according to the security policy, it is confirmed and

accepted by the whole group. This assures a (k,N) k < N threshold scheme where unless

more than k peers of the total N peers get compromised, the system remains secured,

according to the trust model.

Application Data Format Layer: The distributed ledger stores multiple types of record

content:

• Application records, e.g., the log of executed and pending commands to a smart grid

system.

• Identity management operations which include certificate issuance and revocation.

68

• Security policy records.

• Executables (i.e., smart contract) in the compiled binary format following WASI.

4.3.3 Evaluation

In this section, we evaluate DLedger’s robustness, scalability, and ability of handling network

partition through the theory analysis and our simulation results over ndnSIM [MAZ17], an

NS-3 based simulation platform for NDN.

The Unconfirmed Records Size: An essential concern of DLedger is its robustness: as

system runs, will the size of unconfirmed records go infinitely large resulting in the system

crash? As proved in [ZVM19], the tailing record size is concentrated around the constant:

nλT

n− 1

where T is the average latency for a new record to be accepted by the system and λ is the

new record generation rate of the system following a Poisson distribution. Moreover, the

proof in [ZVM19] shows that the time for a record being confirmed is also a constant value.

Therefore, since both the frontier (tailing record) and the depth (time to be confirmed) of

DAG’s unconfirmed records keep constant, the unconfirmed record size is also a constant

value.

We evaluate DLedger by the simulation in terms of the unconfirmed record size as the

DAG grows. To be specific, we set up a 50 entities P2P network with Wconfirm = 20,

where each entity’s record generation rate is 0.2 records/sec. As shown in the Figure 4.19a,

the unconfirmed record number will not increase with the DAG’s growth. Instead, the

unconfirmed record number line will increase for a short time after bootstrapping, and then

fluctuate around a constant value, confirming the mathematics proof.

The Figure 4.19b reveals the relationship between the Wconfirm setting and the uncon-

firmed record size when the total entity number is the same: by adjusting the Wconfirm from

69

(a) (b) (c)

Simulation Settings: (a) (b)50 entities P2P network with Wconfirm = 5 and Wconfirm = 20. (c) Total

entity number is 10, 25, and 50. Each entity generates a new record every 5 seconds.

Figure 4.19: Unconfirmed record number and confirmation time in DLedger

5 to 20, the unconfirmed record size will increase by only about 100%.

System Scalability: We argue that DLedger has better scalability because of the following

two reasons. First, DLedger leverages DAG to keep the records. Instead of allowing only

one successful next block in the blockchain, DLedger accept multiple valid next records,

thus allowing multiple entities contributing to the system in parallel. This gets rid of the

computation waste and frees the limit on record processing speed. Second, PoA is used as

the gating function. Unlike PoW which is highly CPU bound, PoA is much cheaper and

efficient even for constrained IoT devices, greatly improving the system efficiency.

We also show DLedger’s performance when the number of entities grows. As shown in

Figure 4.19c, with fixed Wconfirm, the more entities participate, the faster a record will be

confirmed. Because for any specific record, more entities means more efforts on approving

it.

Network Partition: We evaluate DLedger’s performance in the case of network partition:

in the simulation, we split the network into two independent subnets by taking down the

links between them. The partition takes 100 seconds and two networks unit again after that.

Figure 4.20 shows a DAG maintained by an entity at the end of the simulation. As shown,

two branches have formed and then merged, showing DLedger’s ability to recover from the

70

Re
co

rd
 G

en
er

at
ed

 T
im

e

20s

80s

This shows a DAG from the simulation. Each circle in the figure is a record. The links among records are

the approvals. The recent records are higher in the DAG as shown in the figure.

Simulation Settings: 15 entities P2P network. The partition takes place at second 20, dividing the network

into a 7-node subnet and a 8-node subnet. Two networks rejoin at 80 seconds.

Figure 4.20: Simulation of network partition in DLedger

network partition, eventually confirming records from each subnet.

Note that each branch of the partition needs to have more peers than confirmation weight

for this branch to be confirm and recognized by other branch; this prevents entities collude

and flood bad records using a branch.

71

4.4 RapidVFetch: Secured Data Fetching in Vehicular Network

The majority of the materials contained in this section were modified or quoted verbatim

from [ZLD19].

RapidVFetch is an NDN based vehicular data prefetch mechanisms. The main idea is

to let the road side units (RSU) download the data desired by the future vehicles as NDN

named secured data and cache it, so that when future vehicles arrive, it can directly fetch

the data without the round trip to the original data producers or repositories. To facilitate

the notification of desired data from vehicles to the RSU before the vehicles arrive at the

RSU’s coverage, we also utilize the NDN based vehicle to vehicle (V2V) communication.

4.4.1 Background and Motivation

In real world, due to the cost of deployment and support, RSUs can be deployed in many

different environments with various densities and topologies [RST11].

In this work, we target the problem of degraded data downloading performance for vehi-

cles in areas with limited RSU coverage. To illustrate our problem better, we use a simplified

example scenario; that is, a vehicle drives out of a previous RSU’s coverage, loses the RSU

connectivity, and then drives into the next RSU’s range (Figure 4.21). In addition, we sepa-

rate the target applications into two categories. For non real-time applications, the problem

is how to improve data downloading rate by fully utilizing the limited connectivity time. For

real-time applications, the problem is how to ensure a consistent downloading rate for the

user.

Content prefetching in mobile environments to reduce latency in data download has been

well explored in a number of existing works [JK98, NN08, Cho02]. In the context of vehicular

networking, due to the intermittent connectivity between vehicles and RSUs, prefetching of

data content becomes vital for ensuring the quality of information services.

72

RSU

Network
Infrastructure

RSU

Figure 4.21: An example scenario of vehicular data prefetching

Prior works such as [DK09, GS18a, HZ16, KL15] calculate the possible trajectory of the

vehicle and content popularity, then prefetch different chunks of content to RSUs to maximize

data retrieval rate. Fundamentally, RSUs fetch the required content from the cloud server

based on a prediction model, and vehicles fetch desired content from RSUs when moving

inside their signal range. The prediction and caching strategy aims to facilitate this content

fetching process with minimum delay.

These approaches were proposed to run over IP, but its design lean towards a data-

centric solution as their proposed mechanisms make data independent of the IP’s point-to-

point channels. Following this direction, it becomes ideal to apply a data-centric solution to

the vehicular content prefetching problem to avoid the overhead of address allocation and

connection state maintenance.

A common issue with existing IP-based and NDN-based prefetching approaches is that

their performance is dependent on using a centralized server for accurate predictions, as

inaccurate estimation causes waste in storage resources, and hurts download performance.

We propose a requester-initiated prefetching solution to better satisfy the real-time needs

of vehicles, and increase the utilization of in-network storage. Our solution does not make

predictions based on predefined models, neither does it depend on prior travel paths nor

request history, but prefetches content on RSUs based on real-time user requirements in a

timely manner.

An existing approach following a similar idea was [RZ13], which allowed vehicles to

73

signal the currently connected RSU when a handover process was going to happen, and

notify the following RSU to prefetch the required content. Therefore, the protocol is not

transparent to RSUs. Other than [RZ13], existing approaches like [AB17] [GS18a] also make

use of RSU and infrastructure side routers for content caching. This means RSUs and

wired infrastructure side routers need software upgrades to support new protocols, which

increases deployment difficulties. Rather than relying on RSUs or infrastructure routers

to cache content, in RapidVFetch, we take an alternative approach by making use of V2V

communication to initiate content prefetch requests and content delivery. In doing so, we

do not need to upgrade existing RSU infrastructure, and only require the vehicles involved

in the communication process to support our protocol. This also reduces the attack surface

on RSUs as we can authenticate the communicating vehicles through physical connectivity

to the RSUs.

Another issue with existing work is the lack of security considerations in prefetching. The

prefetching process is asynchronous and how to ensure integrity, authenticity, and confiden-

tiality of prefetched data becomes a main challenge. In RapidVFetch, we provide an approach

to protect sensitive information in NDN names and Data content from eavesdropper (e.g.,

other vehicles, RSUs).

4.4.2 Design of RapidVFetch

We propose RapidVFetch to facilitate vehicular data downloading by prefetching named,

secured data via V2V communication over NDN. Intuitively, since it is the vehicle who

best knows its future locations and desired content, RapidVFetch lets each vehicle, called a

requester, express their needs by Interest packets which are small in size and solicit help from

other vehicles, called forwarding vehicles, through V2V communication. Vehicles at future

locations can simply express these small Interest packets to the RSUs, where the prefetched

packets will be cached at the RSUs and will soon be used by the requester when it moves

into the RSU’s range. For real-time applications, the data can also be forwarded back to the

74

requester.

RapidVFetch provides the following desirable features.

• Having each requester take care of their own needs, RapidVFetch provides accurate

content prefetching at desirable RSUs without reliance on centralized services.

• By utilizing forwarding vehicles, RapidVFetch allows a requester to maintain stable

data downloading for real-time applications.

• Enabled by NDN’s built-in security, RapidVFetch ensures data authenticity and con-

fidentiality regardless of the trustworthiness of other vehicles or RSUs involved in the

downloading process.

• RapidVFetch is transparent to the infrastructure and RSUs, that is, RSUs and back-

bone routers do not need to be aware of RapidVFetch.

The goal of RapidVFetch is to facilitate and secure the data downloading from the infras-

tructure to vehicles by utilizing broadcast V2V communication and NDN’s content-centric

networking model. To be more specific, for non real-time applications, RapidVFetch aims

to improve data downloading rate by fully utilizing limited connectivity time; for real-time

applications, the goal is to keep the requester online and ensure a smooth downloading rate.

In a nutshell, as shown in Figure 4.22, a requester contacts a forwarding vehicle in the

target RSU’s range through V2V communication (which may contain single or multiple

hops) to prefetch data (Ê). For non real-time applications (e.g., video downloading), when

the requester drives into that RSU’s range, it can re-send Interests for the prefetched content

and benefit from proactive caching (Ë), improving utilization of the limited connectivity to

RSU. In the case when real-time communication is required (e.g., online conferencing), the

forwarding vehicle can also forward the replied content back to the requester in order to keep

the requester online (Ì). Importantly, RapidVFetch considers each Data’s security in the

75

downloading process. The downloaded Data packets are signed and can also be encrypted

using NDN’s built-in security primitives and name-based access control (NAC) [ZYR18].

Infrastructure

Cached

Requester
Forwarding Vehicle

1

2

3

Infrastructure

Figure 4.22: An overview of RapidVFetch

By letting each requester initiate their own prefetch Interest packets, RapidVFetch always

provides accurate prefetched data at target RSUs, getting rid of the centralized service for

content/location prediction. In addition, this allows the requester to have a better control on

when to trigger the prefetching, so RapidVFetch has more flexibility to cope with complicated

road conditions (e.g., unexpected delay). For example, if there is a traffic congestion before

entering the next RSU, the requester can delay the prefetch. At the same time, since a RSU

does not need to treat prefetching Interests differently, the RSUs do not need to be aware

of the RapidVFetch protocol. Consequently, RapidVFetch can be deployed at vehicles only

without bothering RSUs and the infrastructure behind RSUs.

Our work illustrates the superiority of using a data-centric network architecture in vehic-

ular networking: NDN enables RapidVFetch to let vehicles themselves pick what to cache

in desired RSUs without reliance on a predictor; at the same time, the prefetched data is

secured in a data-centric way and the whole process can be transparent to the infrastructure.

76

4.4.3 Securing Vehicular Data Prefetching and Downloading

In RapidVFetch, we consider the security of both the data prefetching process and the down-

loading process, which further includes (i) authentic use of RapidVFetch on RSUs, (ii) in-

tegrity and authenticity of downloaded data, and (iii) user privacy and the confidentiality of

downloaded data.

Authentic Use of RapidVFetch on RSUs: It is nontrivial to authenticate users in an

open wireless network system. To date, a number of vehicular security architectures have

been proposed to employ a Public Key Infrastructure (PKI) in vehicular networks. However,

these approaches provide means to ensure a vehicle has a valid plate, the driver has a valid

license, or the vehicle is made by a verified manufacture, but they are not sufficient to prove

the application is honest, e.g., whether the application will send spam or DDoS traffic to

a RSU. Therefore, in this work, to mitigate spam Interest packets towards the RSU, we

consider a simple but reliable means to authenticate a user: only forwarding Interest packets

sent by users within RSU coverage.

This feature also distinguishes our work from existing works. For example, [RZ13] pro-

poses a solution where a previous RSU issues an Interest packet to the next RSU. However,

it is difficult for a RSU to verify that the Interest is from another RSU and is truly originated

by a vehicle that will later drive into its own coverage. In contrast, RapidVFetch reduces

the attack surface and RSUs can keep the strict access policy (i.e., traffic within coverage)

without being aware of the RapidVFetch protocol.

Data Integrity and Authenticity: Acting as an Interest forwarder, the forwarding

vehicle may direct the Interest to a fake service provider maliciously; as can the RSU, which

may alter replied Data packets in their cache. Such alteration or fake Data packets will

degrade the downloading and may cause damage to the requester. It is difficult for today’s

channel-based security model (e.g., TLS, QUIC) to ensure the data integrity/authenticity

because the data will be cached at the RSU. This is because by the time the data is used

77

by the requester, the secured channel does not exist any more and thus no security can be

guaranteed.

However, empowered by NDN’s built-in security, in RapidVFetch, every Data packet

is signed (Figure 4.23) by its original producer, e.g., the video streaming service provider.

Consequently, such alteration or fake Data packets will be detected by verifying Data packet

signatures. If the data has a bad signature, the requester should resend the Interest packets

and fall back to the normal downloading mode.

User Privacy and Data Confidentiality: A forwarding vehicle is able to know the

Interest packets from the requester and the RSU can also grab information from the replied

Data packets. This raises the user privacy concern for potentially leaking information of

requester’s ongoing actions and desired content. However, NDN names are not necessarily

readable to eavesdroppers and the Data payload can also be protected through cryptographic

techniques (Figure 4.23).

As a simple and effective solution to prevent information leakage, the requester and

the service provider can negotiate a shared secret (e.g., through Diffie-Hellman protocol)

asynchronously (e.g., ahead of vehicular communication). The shared secret can then be

used to keyed hash or encrypt the sensitive name components in the Interest packets and

content in the Data packets. For example, assuming the service provider’s routable prefix is

/service1 and the full name prefix of the downloaded data is /service1/movie/movie1/frame, the

shared secret can then be used to hide the name components after /service1 and the replied

Data payload.

A more systematic data confidentiality solution is to apply name-based access control

(NAC) [ZYR18]. To be more specific, the service provider acts as an access manager who

grants the application the access (i.e., decryption keys) to certain content. The access right

granting is based on the service provider’s policy and application’s identity, which is repre-

sented by a public key certificate. By the NAC scheme, the content will be encrypted with

encryption keys while the decryption keys will be distributed to authorized applications se-

78

RSU

Payload

Digital Signature

Content-Identifier/ServicePrefix/

: protected information

Content-Identifier/ServicePrefix/Interest: Data Packet

Each Data packet carries a digital signature. Sensitive information in Interest name, Data name, and Data

content will also be protected.

Figure 4.23: Data-centric security in RapidVFetch

cretly (i.e., in ciphertext). In addition, different encryption keys protect data under different

name prefixes, allowing a fine-grained and flexible access control.

4.4.4 Evaluation

We first compare RapidVFetch with existing prefetch approaches. We then simulate Rapid-

VFetch against a baseline scenario where prefetch is not deployed and an optimal scenario

where we assume the vehicle will always drive within an RSU’s coverage.

Comparison With Related Works: We made a comparison between existing prefetching

approaches with RapidVFetch in Table 4.3.

As shown, unlike existing IP-based and NDN based approaches, RapidVFetch does not

assume a known traffic pattern or content popularity distribution and is the first approach

that does not require deployments at infrastructure (i.e., RSUs and the wired network).

We did not compare our work with others through simulations because many of them utilize

traffic/content prediction which highly relies on the environment settings and can be seriously

affected by biased input, e.g., route prediction on a office worker who drives the same route

everyday can be very different from that on a taxi driver whose route is nearly random.

Simulation Settings: To evaluate RapidVFetch’s performance, we perform simulations

over ndnSIM [MAZ17], a NS-3 based simulator. We simulated a 1200 meters single-direction

79

System Main Approach Cost T2I* Prefetch Accuracy

[GW16]
Prefetch by

Centralized Service

Centralized vehicle info gathering and

mobility/content prediction
7

≈100% when mobility prediction

is correct.

[GS18a]
Learning Based

Prefetch

Information gathering and decision

making on each RSU
7

≈80% when content popularity is

known

[AB17]
Markov Based

Prediction

Centralized Training & Prediction,

Cache Redundancy
7

≈100% when router tree

topology is 8 layers high

[MG16]
Integer Linear

Programming Based

Each RSU prefetches data based on

retrieval probability assessment
7

≈85-90% when content

popularity and user mobility are

known

[RZ13] RSU Driven Prefetch
Negotiation Between RSUs. Allowing

remote control of RSUs.
7 ≈100%

Our

work

Requester Driven

Prefetch
Distributed V2V Communication 3 ≈100%

∗: Transparency to the Infrastructure

Table 4.3: A comparison between RapidVFetch and related works

road with 6 RSUs placed at 100, 300, 500, 700, 900, 1100 meter respectively. Each signal-free

zone between two adjacent RSUs is 80 meters. The requester starts at 0 meter with a velocity

at 20 m/s. To be more specific, we simulated RSUs over IEEE 802.11b 2.4GHz with a signal

range of 60 meters and V2V over IEEE 802.11a 2.4GHz with a signal range of 40 meters.

In our simulations, the packet loss in wireless media depends on the distance between the

transmitter and the receiver. The topology is a simplified tree as shown in Figure 4.24. We

have disabled all the NDN cache of non-RSU nodes so that a requester cannot benefit from

the cache in common ancestor routers.

In all the simulations, the requester will fetch Data packets one after another, so the

performance is not related to Interest sending policies (e.g., batched Interests or parallel

Interests). An Interest packet will be retransmitted in the case of timeout.

Baseline and Optimal Scenarios: We first evaluate a baseline scenario (Figure 4.25a)

where vehicles download data without RapidVFetch and an optimal scenario (Figure 4.25b)

where we temporarily enlarged the RSU coverage to 120 meters so that the requester is

80

4
1 2

Service
Provider

3
5

6

The cache of router 1-6 has been disabled.

Figure 4.24: The simulation topology for RapidVFetch evaluation

0 10 20 30 40 50 60

0
10

20
30

40

(a) Baseline Scenario

0 10 20 30 40 50 60

0
10

20
30

40

(b) Optimal Scenario

0 10 20 30 40 50 60

0
10

20
30

40

(c) Basic (Optimal)

0 10 20 30 40 50 60

0
10

20
30

40

(d) Real-time (Optimal)

0 10 20 30 40 50 60

0
10

20
30

40

(e) Basic (Suboptimal)

0 10 20 30 40 50 60
0

10
20

30
40

(f) Real-time (Suboptimal)

The x axis is for the simulation time (second) and the y axis shows the downloading speed (packet per

second))

Figure 4.25: RapidVFetch performance in baseline and optimal scenarios

always under RSU coverage. As shown, in baseline scenario, the downloading speed is zero

when the requester is out of RSU coverage and back to full speed (about 8 pkt/s) after the

requester enters RSUs. In the optimal scenario, the downloading speed is always around full

speed. Fluctuations in downloading speed are caused by the packet losses in the wireless

media.

RapidVFetch with Optimal Traffic: We then simulated both basic and real-time Rapid-

VFetch (Figure 4.25c and Figure 4.25d) under an optimal traffic scenario where we temporar-

ily added forwarding vehicles that are always available to the requester. Compared with the

81

baseline scenario, the downloading speed in basic RapidVFetch is greatly improved: after

the requester enters a RSU, there is an obvious increase in the downloading speed; this is

because the requester can fetch pre-cached packets from the RSU with a minimum delay

(fetch within one hop). After that, the downloading speed falls down to a normal download-

ing speed; this is because all the prefetched packets have been retrieved by the requester

and later downloading subjects to the normal RTT. Regarding the real-time RapidVFetch

in Figure 4.25d, the requester can keep consistently downloading content while moving out

of the RSU coverage, so the download speed is close to that of the optimal scenario.

RapidVFetch with Suboptimal Traffic: We also simulated basic and real-time Rapid-

VFetch (Figure 4.25e and Figure 4.25f) under a suboptimal traffic scenario when there may

not be available forwarding vehicles from time to time. To be more specific, we simulated 9

other vehicles on the road for forwarding packets, each with a random velocity and a ran-

dom starting position following a Gaussian Distribution model with mean value of 20 m/s

(standard deviation is 5 m/s) and 0 meter (standard deviation is 20 meters), respectively.

As shown, compared with Figure 4.25c (upper downloading speed exceeds 40 packets/s) and

Figure 4.25d, the downloading speeds in Figure 4.25e and Figure 4.25f become lower because

when forwarding vehicles are not always available, fewer packets are cached in basic Rapid-

VFetch and fewer packets are forwarded back to the requester in real-time RapidVFetch.

Compared with Figure 4.25c, in Figure 4.25e, since a number of packets were not cached

scattered among cached packets, the fluctuations in downloading speed are more spread out

and the average downloading speed is lower.

4.5 NDN-MPS: NDN Multiparty Trust Support

The majority of the materials contained in this section were modified or quoted verbatim

from [ZLK21].

NDN-MPS is a toolset to support multiparty signature signing and verification over NDN.

82

The core idea is to utilize the names in NDN to express the signing and verification policies

required by the multiparty signing scenarios, and use an NDN based remote procedure call

(RPC) for signature piece collection from multiple signers. Like a normally signed packet in

NDN, a piece of multi-signed data can be verified regardless of where the packet is fetched.

4.5.1 Background and Motivation

For reasons such as multiparty contractual policies and mitigating single points of failure,

many real-world systems require a joint decision-making process where multiple parties are

involved. For example, for grid-connected distributed energy resources (DER) systems, the

conventional way of having single proprietary connections to secure grid assets will no longer

be sufficient due to the business model change [Joh21, The14]. Instead, smart devices like

solar inverters will have multiple parties, including customers, manufacturers, grid operators,

who need to access and send remote commands, often over the public Internet.

Recently, Named Data Networking (NDN) [ZAB14] started being explored to provide

secure networking support for DER systems. The diversity and number of stakeholders

and DER service provider business models [Joh21] require a multiparty trust model with

expressive and flexible trust policies. While NDN has developed supporting mechanisms

to secure producer-consumer communications by using crypto signature schemes such as

RSA and ECDSA, there is no existing work on multiparty authentication and authorization

support. This work fills in the gap by designing and implementing a secure, efficient, and

usable multiparty signature solution for NDN-enabled applications.

We introduce a typical scenario in NDN based DER used throughout the section to ease

the reader’s comprehension of various concepts. Assume an equipment manufacturer requests

customers upgrade an inverter’s firmware to correct a security vulnerability. To make the

update, the maintenance operator, Alice, needs a command, an NDN data object, to be

jointly signed by the following parties: (i) the equipment manufacturer’s Quality Assurance

(QA) department (certifying the upgrade is of release quality), (ii) the solar site’s operation

83

Operation Team
/Site/operation/

(Signer)

Quality Assurance Team
/Mfr/QA/
(Signer)

Site Owner
/Site/owner/

(Signer)

Alice from Maintenance Team
/Site/maintenance/Alice

(Coordinator)

Inverter Firmware
Update

Collect
Signature

Collect
Signature

Manufacture

Solar Site

/Site/inverters
(Verifier)

Figure 4.26: An example scenario of multiparty authentication

team (ensuring they know the equipment will be offline for some time), and (iii) the site’s

owner (permitting the possible production reduction, if the process cannot be completed

promptly). The equipment that executes the firmware update will verify the signed data to

ensure that it can safely proceed with the update. We further assume Alice’s NDN name

is /Site/maintenance/Alice, the signers’ prefixes are /Mfr/QA, /Site/operation/, and /Site/Owner,

respectively. Under each prefix, there can be multiple entities; for example, under /Mfr/QA

there can be /Mfr/QA/operatorX and /Mfr/QA/operatorY.

Supporting multiparty signature requires a different security model than that supported

by the existing NDN security solutions [ZYZ18], which considers only two types of parties:

a consumer (verifier) authenticates its received data generated by a producer (signer) based

on given policies. First, multiparty signing involves third-party signers in the system who

need to sign data produced by others. Second, the verifier will need to verify the data’s

signatures against the given set of signers, so a new type of trust schema is needed to define

the set of signers that can jointly make a legitimate signature. Third, effective and secure

coordination among multiple signers is required to ensure the correctness of the joint signing

84

process.

Therefore, we propose NDN-MPS, an NDN-based multisignature signing and verification

toolset. To simplify the orchestration of the signing process among multiple signers, NDN-

MPS makes a design choice of having a coordinator in each multiparty signing process who

will take the unsigned data as input and carry out the signing process by collecting required

signature pieces from all the required signers. As such, NDN-MPS provides applications

with the support of coordinators, signers, and verifiers in multiparty signing scenarios:

1. A new design of trust schema that supports the semantics for multiparty signing and

verification, including threshold-based policies (e.g., legitimate if signed by any k out

of n signers).

2. A signature collection protocol for the collection of signatures from multiple signers.

The protocol ensures the authenticity of the collected signatures and preserves the

confidentiality of the data being signed and the secrecy of the signing progress.

3. A new type of key locator scheme to ensure the data integrity in the multiparty signing

process and to accommodate multiple signers.

We implement NDN-MPS in C++ with a multisignature scheme called BLS [BLS01, BGW20].

Note that NDN-MPS can easily be extended to other non-interactive multisignature schemes

like MSP multisignature [BDN18] and the Bitcoin ECDSA threshold signature [GGK15,

GGN16].

4.5.2 A New Trust Model

In each multiparty signing process, there are three parties:

• Coordinator. The coordinator is signaled by the data producer to generate a mul-

tisignature for the data. Based on the application’s requirements defined by the trust

85

schema, the coordinator will collect signatures from a group of known signers and then

aggregate them into a multiparty signature. To collect signatures, the coordinator

needs to know signers’ names and certificates.

• Signers. The signers can come from different organizations and have different trust

anchors. If a signer approves the data to be signed, either through in-band opera-

tions (e.g., database query) or out-of-band operations (e.g., human decisions), that

individual will make a signature piece for aggregating with other signers’ pieces.

• Verifier. The verifier is called by the data consumer to verify a multisignature along

with the data covered by the signature. The verification succeeds if the multisignature

is valid and if its signers satisfy the application’s requirements as defined in the trust

schema.

It is noteworthy that we separate the above roles based on functional logic. In practice,

one entity can play multiple roles, e.g., the coordinator can also be one of the signers. In

addition, an entity can play different roles in different signing processes.

In our example, the operator Alice is the producer of the command and runs the coordi-

nator. The manufacturer’s QA team, the site’s operation team, and the site owner are the

signers. After being signaled by Alice that the signed command is ready, the inverter, as the

data consumer, will fetch the data and call the verifier to verify the multisignature.

Assumptions: We assume all three types of entities have gone through the standard

NDN bootstrapping process [ZYZ18], through which each entity in the system obtains an

identity, certificate, the system trust anchors, and the trust schema. Note that all the

signers’ key types should be compatible with NDN-MPS, e.g., BLS key type with the current

NDN-MPS implementation. Therefore, signers can authenticate coordinators, and verifiers

can authenticate signers. As stated, we also assume the coordinator’s awareness of the

signers from which the coordinator can select appropriate signers to generate legitimate

signatures. In addition, there is a known attack against the BLS signature, called rogue

86

key attack [BGW20], where a malicious coordinator may successfully generate a legitimate

multisignature without obtaining real signature pieces from the signers. To prevent such

types of attacks, as suggested by [BGW20], we assume that each signer’s certificate carries a

piece of cryptographic information, called a proof of possession, to prove the possession for

the public key corresponding to secret key.

Signing and Verification Process: Under the system model, a complete signing and

verification process can be described as follows in an abstract way.

1. The coordinator starts by deciding the signer list based on the trust schema and pro-

ceeds through the signing process by contacting individual signers.

2. Each signer verifies the request against the trust schema to ensure that the coordinator

is legitimate.

3. If the signer is permitted by the application logic to sign the data, it generates the

signature and sends it to the coordinator.

4. The coordinator aggregates the collected signature pieces into one and appends it to

the unsigned data to get the finalized signed data object.

5. After the consumer application obtains the signed data, the verifier verifies the signed

data against the trust schema.

The coordinator is triggered to start the process by certain application events. For

example, the maintenance operator Alice can start the coordinator when receiving a firmware

update notification from the manufacturer. Similarly, obtaining the signed packet is also

realized at the application layer. In the same example, the inverter can call the verifier when

receiving the firmware update command.

To ensure the security of the system, the following policies should be explicitly and

rigorously defined by the trust schema.

87

Coordinator

Signer Signer

1
Signature
collection
with RPC

Signed
data

SigInfo2 Aggregation
Verifier

3 Verification

Guide signature
verification

Guide signer
selection

Multiparty Trust
Schema

Multiparty Trust
Schema

Multisignature
Trust Schema

API Call

Producer

API Call

Consumer

Multiparty Trust
Schema

Multiparty Trust
Schema

Coordinator
Verification

Trust Schema

Affect signing
decision…

Figure 4.27: An overview of NDN-MPS

• Coordinator Verification Trust Schema. In step 2, the trust schema needs to

define the coordinator based on the names or name patterns of legitimate coordinators.

• Multisignature Trust Schema. In step 5, the trust schema needs to specify how

many and which signers can generate a legitimate signature for a given named data.

In step 3, whether a signer will agree to the sign data depends on two factors. First,

each signer should ensure the data is allowed to be signed by her according to the installed

multisignature trust schema. Second, the signer may also need approval from the application

logic, e.g., through some database query or even human decision making; this process is

application-specific and thus omitted in this work. Importantly, depending on application

scenarios, the time duration of this step may vary significantly. In the example, to ensure

the power supply after shutting down the inverters for the update, the public utility may

need to measure the remaining power supplies against the power demand in the area before

agreeing to sign the command.

4.5.3 Design of NDN-MPS

NDN-MPS is designed as a security support toolset for applications. NDN-MPS consists of

three main components (Figure 4.27). First, a new type of trust schema that allows applica-

88

tions to express the signing and verification policies of multisignatures. Second, an extension

of the key locator in NDN data objects to keep the to-be-signed data consistent across sign-

ers and allow complex signature information. Third, a signature collection protocol for the

coordinator to collect signatures from multiple signers.

These three components are used in the process of multisignature signing and verification.

Signature Collection: The coordinator starts the signing process when the application

provides the unsigned data and the multisignature trust schema through a local API call.

From the trust schema, the coordinator identifies a list of signers and then starts the signature

collection. In a nutshell, the coordinator issues a signed request to the signer and presents

the unsigned data as the request parameter. To ensure the consistency of the data to be

signed among signers, the coordinator will fill the key locator field with a placeholder name

called late-binding key locator. Such a placeholder is the key to make the data to be signed

deterministic and consistent across multiple signers.

Upon receiving the request, each signer will first verify it against the coordinator verifica-

tion trust schema to ensure that its sender is a legitimate coordinator. After that, the signer

can decide on whether to sign the data or not. In this process, besides checking against

known multisignature trust schema policies, the signer may also need to go through some

application-specific procedures. If the signer’s application agrees to sign the data, it will

generate the signature over the data, without modifying the key locator or any other fields.

In an unstable network or in an attack, signers may be forced offline, unable to be

reached by the coordinator. In this case, the coordinator can try to reach an alternative

signer permitted by the trust schema, e.g., the coordinator Alice can try /Mfr/QA/operatorY

when /Mfr/QA/operatorX is unavailable. This design provides a certain degree of resiliency

that even if some signer fails, the signing can continue. Importantly, the change of signers

will not affect the value of the late-binding key locator name as it is a placeholder, so the

consistency of the data being signed among signers is preserved.

89

Signature Aggregation: After collecting sufficient signature pieces, the coordinator ag-

gregates them to generate a single signature and attach it to the original unsigned data. In

addition, the coordinator generates another Data packet, called a SigInfo packet, to carry

carries the signer information, i.e., signers’ key names. The referenced trust schema policy

name and the aggregated public key value can also be included to facilitate the verification

process. Importantly, SigInfo is named with the placeholder key locator name. As such, a

SigInfo packet can be linked from the signed data’s key locator, overcoming the limitation

of the existing key locator design, which does not support multiple signers.

Signature Verification: To verify a piece of multiparty signed data, the verifier first needs

to obtain both the signed data, which is expected to be integrated with specific applications.

The SigInfo packet can then be fetched with an Interest carrying the key locator name

specified in the signed data. After that, the verifier first checks the signer list from the

SigInfo packet against the multisignature trust schema to ensure the signers are legitimate

to sign such a piece of data. Finally, the verifier validates the multisignature using the public

keys of the signers.

4.5.4 Multisignature Trust Schema

As the baseline, the trust schema allows specifying multiple required signers. For example,

a signature is valid only when required signers S1 to Sn are present. With our trust schema

syntax, the key name of S1 to Sn will be listed under a configuration field called “all-of”.

Furthermore, to enjoy the flexibility of structural names, the trust schema should allow

name patterns. For this purpose, the multiparty trust schema supports wildcard charac-

ter ∗, which can match any name component. In our example, the wildcard character in

/Mfr/QA/*/KEY/* allows any operator under the equipment manufacturer’s QA team to par-

ticipate in the joint signing.

The pseudo-code of a multisignature trust schema for the example use case is shown

90

below. The rule applies to the command to update the solar inverter firmware. The known

signers should be the registered operators under each responsible organization’s prefixes,

which are omitted for simplicity.

Data profile: /Site/inverters/firmware/update

All-of { /Mfr/QA*/KEY/*

/Site/operation/*/KEY/*

/Site/Owner/*/KEY/* }

we let multisignature trust schema support threshold verification policy by adding two

new field called “at-least-num” and “from”. To express the policy that a signature is valid

when k out of m signers are present, the k will be specified by the “at-least-num” and the

key names of m signers are listed after the “from”. We show an example of multisignature

trust schema with threshold verification below. Different from the required signers, it only

needs any two of the three parties to generate a legitimate signature. Note that these two

fields can also be used together with existing multisignature fields to support more complex

policy, e.g., a signature needs n requires signers and k out of m optional signers.

Data profile: /example/data/*/*

At-least-num 2

From { /Site/operation/*/KEY/*

/Mfr/QA/*/KEY/*

/Site/Owner/*/KEY/* }

Compared with cryptographic solutions of threshold scheme, NDN-MPS does not need

any centralized trusted dealer, and the key maintenance is much simpler. To be more specific,

the key setup does not require interactive operations and can be done individually per signer

with the public parameters. In addition, the keys can be managed individually. For example,

a signer’s key can be renewed or revoked without bothering other signers’ keys.

91

4.5.5 Evaluation

Implementation: We have implemented NDN-MPS into an open-source library in C++.

Our library depends on ndn-cxx [Ndn21] and a BLS library [Shi21] that have been fully ex-

amined and is compatible with the BLS API specification defined by Ethereum 2.0 [Pro21].

Our library is implemented over the curve BLS12-381. In this section, we explain our imple-

mentation of multiparty trust schema and the integration of NDN-MPS into NDNCERT to

realize multiparty-approved certificate issuance and revocation.

The multisignature trust schema is implemented in the library as a trust schema configu-

ration file parser. To support more complicated use cases where there are multiple acceptable

signer sets, one can simply created multiple trust schema files applying to the same data pre-

fix. In the signature verification process, the signature is accepted if there is at least one trust

schema rule is satisfied. The known signers are implemented with a separate configuration

file which contains a list of NDN certificates.

Bandwidth and Network Overhead: A BLS signature piece from a single signer and an

aggregate signature are of the same size. With BLS12-381 elliptic curve [SKS20] (providing

about 128 bits of security), the BLS signature size is 96 bytes, which is slightly larger than

a ECDSA signature (about 72 bytes) and much smaller than a RSA signature (256 bytes)

when providing similar bits of security. Regarding the size of public key certificates, a BLS

public key over BLS12-381 is only 48 bytes, which is much smaller than either ECDSA public

key or a RSA public key when providing similar bits of security.

The RPC in NDN-MPS requires 2 round trip time (RTTs) when the signer is available. If

the signer is unavailable, the coordinator will notice it after the timeout of the first Interest.

NDN data Signing/Verification Overhead: We compare the NDN data signing and

verification performance of BLS multisignature with conventional public key signatures in-

cluding ECDSA (on elliptic curve secp256r1) and RSA (with 2048 bits key). ECDSA and

RSA are realized by NDN-CXX’s keychain with OpenSSL. The content of the data to be

92

signed is 16 bytes of random data. As shown in Table 4.4, although slower than ECDSA

and RSA (OpenSSL has specialized hardware and software optimization), the performance

of BLS signature in NDN is still practical.

Operation BLS ECDSA RSA

Signing 1.38ms 0.15ms 1.58ms

Verification 4.32ms 0.43ms 0.14ms

Table 4.4: A comparison of overhead between NDN-MPS BLS and NDN-CXX signatures

Scalability to Signer Number and Data Size: We also evaluate the scalability of NDN-

MPS by increasing the number of signers needed for the signature generation and the size

of data to be signed. As shown in Figure 4.28a, only aggregation time is linearly affected by

the signer number while the signing and verification time stays almost constant. As reported

in Figure 4.28b, with two signers, when increasing the data size, time of signing, aggregation

and verification stays mostly constant.

0 10 20 30 40 50 60
of Signers

2
0

2
1

2
2

2
3

2
4

2
5

2
6

O
pe

ra
tio

n
Ti

m
e

(m
s)

 signing
 aggregation
 verification

(a) Different # of Signers

2
2

2
4

2
6

2
8

2
10

2
12

Data Size

2

3

4

O
pe

ra
tio

n
Ti

m
e

(m
s)

 signing
 aggregation
 verification

(b) Different data Size

Figure 4.28: NDN-MPS scalability to signer number and data size

93

CHAPTER 5

Build Usable Security Solutions using Data-centric

Security

In this section, we describe the design of EL PASSO and ReLiShare, and discuss how the

concept of data-centric security can be utilized to address security and privacy issues en-

countered by today’s application systems.

5.1 EL PASSO: Privacy-preserving Asynchronous Authentication

The majority of the materials contained in this section were modified or quoted verbatim

from [ZKS21].

EL PASSO is a privacy-preserving and asynchronous Single Sign-On (SSO) protocol. The

insight of EL PASSO is to decouple the SSO based user authentication from the synchronous

secured connection to the identity provider by making the authentication information a piece

of secured data. This secured data is considered as a credential and will be carried with the

user for each sign on process.

5.1.1 Background and Motivation

SSO is an answer to the complexity and fragility of using individual passwords on the web,

i.e., leading to reuse and leaks [IWS04]. SSO enables the use of a unique identity provided by

an Identity Provider (IdP). Users authenticate themselves to services (called Relying Parties–

94

RP) with tokens provided by their IdP. SSO improves overall web security [Goo12] and

enables the generalization of good security practices such as the use of 2-factor authentication

(2FA) [OBM18].

OpenID Connect (OIDC) is a dominant SSO solution used by over a million websites in

2020 [Sim20]. Major web players such as Google or Facebook play the role of IdPs, offering

so-called social login features to RPs previously registered with their services. However,

while facilitating identity management, the wide adoption of OIDC raises concerns on users’

privacy [Bra07, GN14]. These concerns are direct consequences of the synchronous and

coupled mode of operation of OIDC, illustrated in Figure 5.1. Each login request to an

RP requires first an interaction between the user and the IdP for authentication and then

another interaction between the RP and the IdP to validate credentials. An IdP is, therefore,

aware of its users’ every sign-on attempt and can infer private information from the nature

of visited websites [KMW07]. Similarly, RPs learn users’ identifiers at IdPs systematically,

enabling to aggregate identity elements shared to different RPs and violate purpose limitation

(e.g., as defined in the EU GDPR [Com16]). OIDC extensions have been proposed to

increase users’ privacy but only partially address these problems, as they either still leak

users’ global identifiers to the RPs [FKS15] or do not prevent the IdP from logging visited

User

IdP RP

Privacy-breaking

OpenID Connect (OIDC) EL PASSO
IdP RP 1

Asynchronous
Synchronous

token
generator

RP 2

Identity token

User
derives

Figure 5.1: Sign-on in OIDC and in EL PASSO.

95

websites [App21]. We note, finally, that in addition to privacy concerns, the synchronicity in

OIDC impacts availability : Users simply cannot connect to an RP if their IdP is offline. This

requirement of high availability can prevent small organizations (e.g., digital rights NGOs)

from offering an alternative to tech giants’ IdPs and counter Internet consolidation [ATN19].

Our objective in this work is to bridge the gap between the simplicity, ease of deployment

and practicality of OIDC, and privacy-preserving SSO based on anonymous credentials. We

target a complete and integrated system for privacy-preserving SSO that does not compro-

mise performance or ease of use in favor of security.

5.1.2 Design of EL PASSO

We present the design, security analysis, and evaluation of EL PASSO, a practical privacy-

preserving SSO system. EL PASSO is asynchronous and offers unlinkable authentication and

the strong privacy guarantees of anonymous credentials. The generation of authentication

material by the IdP is decoupled in time from its use by the client to sign on at some RP.

It enables minimal disclosure of information: Users may share only elements necessary for a

specific RP or provide authenticatable personal properties to an RP, such as being above a

minimum age or coming from a certain geographical area, without sharing their exact age or

location. The design of EL PASSO acknowledges the practical consideration that unbreakable

anonymity is not desirable for many online services. EL PASSO offers guardrails to the risk

of digital impunity associated with minimal disclosure of information, by providing optional

support for accountability guarantees to RPs about users signing on their services. Users

convicted of fraudulent behaviors (e.g., authors of hate speech or harassment in an online

forum, or publishers of illegal content) can be eventually identified. This identification obeys

a strict cooperation process involving several authorities, whose number and identity must

be announced a priori by RPs using the feature.

EL PASSO provides support for features that are typically expected from non-privacy-

preserving SSO. We develop a double-secret scheme to enable IdP-backed, multi-device de-

96

RP User Database

… …
! ! , !d1 d2

User Devices ID Retrieval

E

…

IDP User Database

… …

User ID ", h" Email, Age, …
…

Reveal user?

YesNoYes

ProveID

VerifyID

Se
tu

p
Ph

as
e

Si
gn

-o
n

Ph
as

e
Device1 Browser

Password Manager

idp.com s, sd1, info, #
Wasm

Module
Download Wasm

RequestID

ProvideID

rp.com
Share email with rp.com?

Prove age > 18 with rp.com?

Save password
for idp.com?

Add another
device

Device1 Browser

Wasm
Module

Password Manager

idp.com s, sd1, info, #

Report misbehaving user

Device2 Browser

Password Manager

idp.com s, sd2, info, #
Wasm

Module

idp.com

Prove approximate location
(±50kms) with rp.com?

Figure 5.2: An overview of EL PASSO.

ployments. EL PASSO is robust against the theft or loss of a device and the secrets it

contains and exposes simple recovery procedures at the IdP. The usage of device-specific

secrets naturally supports 2FA without disclosing the user’s phone or email address. In

addition, we provide guidelines for incremental deployment and show how EL PASSO can

operate alongside OIDC.

EL PASSO operations are divided into two asynchronous phases (Figure 5.2). In the setup

phase, the client obtains an anonymous credential from the user’s IdP. In the sign-on phase,

the client prepares an RP-specific derivation of this credential based on what information

the user decides to disclose, and proves the authenticity of this client to the RP. The setup

phase is executed periodically (e.g., once every few days), while the sign-on phase is executed

each time the user logs in or creates an account on an RP.

All user-side operations (i.e., cryptographic operations) are automatically handled by a

WebAssembly (Wasm) module. Wasm is an open standard that defines a portable binary-

code format for executable programs that can run natively in all major web browsers. The

module is referenced in the HTML pages provided by RPs and IdPs and automatically

97

downloaded, run and later cached by the browser without user interaction. If one of the

participants does not support EL PASSO, our system falls back to regular OIDC interactions.

Setup Phase: The user first generates its secret s used later for authentication. The

user authenticates to their IdP and request their credentials bound to s. The credentials

include user attributes (i.e., name, age) verified by the IdP and a long-term pseudonym γ.

Importantly, the credentials can be used only when possessing the user secret s, so an IdP

(or anyone else) is unable to connect to RPs on behalf of the user. Both the secret s and

the obtained credentials are automatically serialized by the Wasm module and stored in the

browser built-in password manager under the DNS domain of the IdP. The user does not

have to manage cryptographic material manually.

Sign-on Phase: The user connects to the RP’s login page that lists the information

requested for login (under the principle of purpose limitation [Com16], requested information

should be only what is strictly necessary to provide the service). The Wasm module intercepts

the request and asks the user for their consent to share the requested information, using a

popup.

If approved, (i) the module locally randomizes the credentials so that even if an attacker

observes both the RP and the IdP it cannot link the credentials to a specific user of this

IdP. (ii) The module then provides the RP with the randomized credentials and selectively

discloses any subset of information embedded in the credential, enabling selective attribute

disclosure. The client may also generate and include proofs about properties of the at-

tributes they do not wish to share in the clear, enabling provable personal properties. The

secret s is never shown to the RP; instead, the client proves knowledge of it through a zero-

knowledge proof (which unconditionally hides s). Note that the client cannot generate fake

attributes without forging credentials, which would require breaking the underlying PS sig-

nature scheme. (iii) The client locally generates a RP-specific pseudonym ζ. It is impossible

to generate multiple pseudonyms for the same RP DNS domain providing intra-domain link-

ability. Once the RP verifies the credential along with the pseudonym, it considers the user as

98

authenticated. The credentials and the user secret required for the sign-on are automatically

provided by the browser password manager.

Finally, if support for reliable identity retrieval is required by the RP, the client provides

and proves the correctness of an El-Gamal encryption E of their long-term pseudonym γ

encrypted under the public key of specific decryption authorities. If the user misbehaves,

the RP discloses E to these decryption authorities, which decrypt it and collaborate with

the IdP to recover the identity of the user. EL PASSO supports flexible key management

for decryption authorities—the ciphertext is typically encrypted using threshold encryption,

where at least a threshold number of decryption authorities are needed to recover the user’s

identifier.

Multi-device Support: A user may add a new device and use it to connect to RP accounts

created with any of their older devices. Users first connect to their IdP with the new device

using the standard login procedure (e.g., username/password) so that the IdP can associate

the new device with the old ones. Then, the new device needs to receive the secret s without

leaking it to any third party; this is achieved as follows. The new device generates an

ephemeral public/private key pair and sends the public key to the IdP. The user confirms

the new device at the IdP using one of the older devices, and the Wasm module encrypts

s under the new device’s public key. The IdP sends the encrypted secret to the new device

allowing it to request credentials over s. The process does not require direct communication

between user devices and can be performed asynchronously. The users confirms the new

device with a single button at the IdP without being exposed to the key exchange.

Two-factor Authentication: EL PASSO allows RPs to require two-factor authentication

(2FA), i.e., that users connect from two different devices for attesting their authenticity.

Under the principle of minimal disclosure of information, 2FA does not require revealing an

email address or phone number, but only to use two different previously-enabled devices.

This requires, in addition to secret s, a device-specific secret sd. The client includes sd

during the setup phase making it a part of the credentials. When the user connects with a

99

given device to the RP for the first time, they provide ζ and generate an RP- and device-

specific pseudonym ζd derived from sd and the RP’s DNS domain name. Similarly to ζ, ζd

are unlinkable across domains and cannot be re-used by a malicious RP. The RP is able

to link the new device to the user account using ζ and adds ζd to the list of authorized

devices. Subsequent logins using the same device requires only providing ζd and do not

involve additional overhead. When requiring 2FA, an RP simply checks that two subsequent

logins are performed from devices with different values of sd.

Device Theft Recovery: A user can declare the loss of a device to their IdP. The IdP

will stop issuing credentials for that device. A thief able to unlock the secret storage of the

stolen device’s browsers would be able to connect to RPs, unless 2FA is required, but only

until the IdP credential expires. It will not be able to authorize new devices. Users do not

lose access to their RP accounts as long as they hold at least one device (or two devices, if

2FA is required). A user can replace their secret s using the following procedure. The user

contacts the IdP and asks for credentials on a new, blinded s′; from now on, the IdP will

not renew credentials for s to preserve sybil resistance. The client connects to the RP and

presents credentials over the old, expired s, ζ(s), and credentials over the new s′ and ζ(s′).

The RP replaces ζ(s) by ζ(s′), and stops accepting credentials on s. The user does not need

to replace the secret at all the RPs immediately, as the attacker is not able to use expired

credentials.

The detailed description of the cryptographic construction of EL PASSO is omitted in

this dissertation; more details can be found in [ZKS21].

5.1.3 Evaluation

EL PASSO aims for ease of deployment by RPs and IdPs, and simplicity for its users. User-

side operations are supported by a client module in WebAssembly [HRS17] received on the

fly from the IdP and cached in the user’s browser. The module automatically manages

100

cryptographic material, storing it using the browser built-in password manager. As a result,

our platform does not require prior software installation or specific hardware and exposes

user interactions similar to OIDC.

EL PASSO is built using PS signatures [PS16, PS18] and designed to limit the amount of

heavy cryptographic operations required for all parties. Our evaluation using representative

user devices and RP and IdP services hosted on Amazon EC2 indicates that EL PASSO

performance, costs, and scalability make it amenable for large-scale deployments. Sign-on

operations only require one round-trip between the user-side client and the RP, and while

more computations are required at the user side than for OIDC, their CPU cost is a factor

of 39x to 180x lower than for those of IRMA [BBC09, ABH17], a previous scheme using

anonymous credentials. This results in comparable or even lower sign-on latency compared

to OIDC, e.g., only 250 ms on a laptop and 800 ms on a Raspberry Pi representative of

a mobile device. Finally, implementations of the RP and of the IdP scale vertically and

horizontally in the cloud, and allow throughput of more than 260 setup phases or more than

170 sign-on phases per second using only a 4-core VM.

More evaluation results can be found in [ZKS21].

5.2 ReLiShare: Data Sharing with Reliable Leaker Identification

The majority of the materials contained in this section were modified or quoted verbatim

from [ZXG20].

ReLiShare is a data sharing system that allows accurate leaker identification if one or more

participants in the sharing leak the shared data in the future. Our insight of ReLiShare is to

let the dataset itself carry the security properties that can benefit a later leaker identification

process in case of a leakage event.

101

5.2.1 Background and Motivation

As the world becomes increasingly online, a wide spectrum of applications need to share

datasets containing sensitive information (e.g., Personally Identifiable Information (PII) [MGS10b])

with multiple parties. For example, public Medicare and Medicaid Services (CMS) share data

that contains people’s identifiable information with laboratories for research purposes across

the country [Cen20]. More than 60% of hospitals in the US share patient information with

different health care providers [Bla19] to benefit patients, e.g., avoiding duplicate tests. It

is also increasingly common that schools or employers share student/employee information

with online educational services for specialized training.

While most data sharing systems entrust the authorized parties with keeping data con-

fidential, recent years have seen increasing violations of this trust [The19b, The19a, Doo20,

BBC19]. For example, in 2019, a data breach affecting approximately 4.9 million users was

caused by the leakage from third party services [Doo20]. As required by new regulations

and laws such as GDPR [GDP21] and CCPA [Cal21], whenever a data leakage occurs, the

leaker(s) must be reliably identified.

The leaker identification (also called traitor identification or guilty agent detection) prob-

lem can be defined as follows. A data owner (called a sender) sharing a set of data objects

with data users (called receivers), where the parties on both sides agree that the shared data

shall not be disclosed to any third party. If any, or all, of the shared data objects are found

in an unauthorized place (e.g. the public Internet, personal laptop), the leaking source(s)

should be identified.

A number of solutions [AK02, AHK03, LSJ03, LSJ05, LWD04, GWL06, Tar08, XF09,

PG09, PG11, GS18b, GS19, SG20] have been proposed to identify leakers in dataset sharing,

however several critical challenges remain unsolved.

1. First, most of them assume a trusted data owner who would never leak data. The

solutions with this assumption cannot detect leakage from the data owner, for example,

102

by its employees intentionally or unintentionally [The19b, The19a, Dep20] or due to

vulnerable firewalls [BBC19]. Worse yet, since the data owner knows the exact dataset

shared with each receiver, it could frame a data receiver by intentionally leaking a

dataset that is unique to an innocent receiver.

2. Second, most existing approaches cannot handle leakage by a set of colluding parties.

Through collusion, multiple leakers can figure out the distinction in datasets by com-

paring each one’s received data, then erase the distinction, for example, by only leaking

common data objects [HPC10].

3. Third, non-repudiation of multiparty data sharing remains a challenge. In the absence

of immutable evidence showing which receiver possesses which dataset, a leaker may

deny its possession of certain data pieces.

We propose ReLiShare, a data sharing system that overcomes the above shortcomings

in data leaker identification. Compared with the existing results, ReLiShare provides non-

repudiation of data possessions of every party in a data sharing agreement; and given a

data leakage, ReLiShare can reliably identify the responsible party, or a responsible set of

colluding parties, even in the case of the data owner being the guilty party or among them.

More specifically, the ReLiShare design includes the following three basic approaches.

• Oblivious Data Sharing. The sender shares data objects through Oblivious Transfer

(OT) [Rab05] with each receiver, so that the sender does not know the exact set of

data objects is transferred, and the receiver does not know the the complete set of data

objects sent by the sender.

• Non-repudiable Receipt based on Merkle Tree. During the data sharing process, ReL-

iShare immutably records the result of the data sharing with Merkle Trees and gener-

ates a digital credential, preventing any party from lying or denying what data objects

have been transferred/received. This step involves the use of an honest third party,

called a notary.

103

• A Knowledge based Identification Algorithm. We propose a novel identification algo-

rithm to identify leakers by inferring the knowledge of the leaker(s) from the leaked

data objects using a statistical method called the binomial test. With this identifica-

tion algorithm, ReLiShare can effectively pinpoint guilty parties, including (i) a sender,

(ii) non-collusive receivers, or (iii) collusive receivers, with a false positive rate and/or

a false negative rate.

5.2.2 Design of ReLiShare

The high-level idea of ReLiShare is to identify leakers based on system participants’ differ-

ent knowledge of the dataset: In the data sharing process, ReLiShare will let every party,

including the sender, have a different view of the dataset. Importantly, each party’s knowl-

edge is unknown to others unless there is collusion. In addition, ReLiShare will immutably

record the data sharing process to ensure non-repudiation of the identification results because

leakers cannot deny or lie about their knowledge of the dataset.

To meet the target properties of ReLiShare, we propose three main technical approaches

(Figure 5.3).

Oblivious Data Sharing: For each receiver, the sender shares a randomly-permuted

dataset to the receiver with 1-out-of-2 OT and the receiver will randomly generate the

choices used in OT (Ê). By properly preparing the OT messages, each receiver will receive

a distinct dataset unknown to the sender and other receivers.

In the sharing process, the sender will allocate a number of data objects, either real data

objects or synthetic data objects, for allocation among receivers. The rest data objects will

be completely received by all the receivers. For the sake of explanation, in the following

description, we assume each OT will only transfer one data object. When transferring the

objects used for allocation, each two data objects will be paired by sender for one OT with

the receiver. As such, only one of the two objects will be received and the choice is unknown

104

Sender

Notary

Receivers

Dataset D

Dataset 1

Dataset 2

2 Certification

1 Oblivious
Sharing

Dataset N

…

leaked Data
Objects

3 Leaker Identification

Credentials
of sharing

Identifiers of
the Leakers

D
at

a
Sh

ar
in

g
Ar

bi
tr

at
io

n

Arbitrator

Dataset D

Figure 5.3: An overview of ReLiShare

to the sender. When sharing the data objects that are not for allocation, each object can be

copied and two same objects will be paired for OT.

After the sharing process, by employing OT, each received copy is a different collection

from all others; even a combination of several received datasets is also distinguishable from

other combinations. Importantly, no single party is fully aware of the allocation among the

receivers.

As noted, to differentiate the knowledge of a dataset among the sender and all receivers, in

ReLiShare, some data objects are not commonly shared, namely dropped during the sharing

process. This is intended and usually inevitable because the goal is to add difference to each

received dataset by doing data object distribution [PG09, PG11], which can potentially limit

the use cases. To allow a wider adoption, ReLiShare provides two options for the sender: the

sender can (i) sacrifice the completeness of real data objects, i.e., each receiver only receives

105

a subset of the genuine dataset, or (ii) add synthetic data objects into the dataset so that

each receiver can receive all genuine data.

Indisputable Receipt based on Merkle Tree: Each data sharing process will be proved

immutably by a Merkle-Tree based credential generated by a Notary (Ë). Such a credential

logs the data objects that have been sent and received, preventing any party from denying

or lying about the data allocation. In this process, the Notary cannot access the plaintext

dataset because all data objects will be hashed into the Merkle Tree.

To be more specific, before the sharing process, the sender will generate a Merkle Tree

of all the data objects that will be sent to the receiver, and send the entire Merkle Tree,

including both the root value and leave values, to the Notary. On the other side, the receiver

will send her choice for future OTs to the Notary. With the Merkle Tree and the choices, the

Notary can predict the Merkle Tree of all the data objects received by the receiver. After

the sharing process, the receiver will generate the Merkle Tree for all the received objects

and send the root value to the Notary. If the root value sent by the receiver is the same as

the value predicted by the Notary, the communication is successful. The Notary will then

write the root values of sender’s Merkle Tree and receiver’s Merkle Tree into a credential

and sign it. The sender and receiver will also sign the credential.

Therefore, the credential can immutably log the result of each sharing process. With

credentials published by the Notary, no party is able to cheat in a later arbitration. In the

case of a data leakage event, the sender and receiver can claim what data objects have been

sent/received, but they cannot lie because their claims can be verified against the credentials.

Knowledge-based Leaker Identification: In the event of data leakage, by reversely

inferring leakers’ knowledge from the leaked data with binomial tests, ReLiShare can identify

all leakers with high accuracy (Ì).

To provide some intuitive ideas of how ReLiShare’s identification works, we show four

leakage examples in Figure 5.4. The dots in the figure are the leaked data objects while each

106

R1

R3R2

(a) R3

R1

R3R2

(b) S

R1

R3R2

(c) All receivers

R1

R3R2

(d) All receivers

Figure 5.4: Intuitive explanation of knowledge-based leaker identification in ReLiShare

circle represents data objects of Dist received by each receiver. The intersection of circles

are the objects that are received by multiple receivers. As shown, if leaked data objects

are uniformly distributed in receiver R3’s circle, as in Figure 5.4a, we can easily infer R3 to

be the leaker. When leaked objects are like Figure 5.4b, the sender is guilty because some

leaked objects have never been received by any receiver (dots not falling into any circle). If

objects are distributed in a specific section as shown in Figure 5.4c, it is trivial to deduce

the leaked data is from Recv1 ∩ Recv3 ∩ Recv{2, which means all three receivers collude in

the leakage. Figure 5.4d is a more complicated scenario where leaked objects are all from

Recv1 ∩ Recv3 but with a non-uniform distribution. Under this scenario, we can still infer

that R2 participates in the collusion because R1 and R3 should not have the knowledge to

distinguish objects that belong to R2 without R2’s help.

Following this idea, the leaker identification phase consists of two steps:

1. Confirmation: The involved sender and receivers provide the Arbitrator with their

datasets sent/received in the same order as in the sharing. By calculating the Merkle

Trees of these datasets and checking against credentials provided by the Notary, the

Arbitrator is able to ensure no party can deny or lie about the result of sharing.

2. Identification: Once the sharing process is revealed, the Arbitrator knows the exact

allocation of synthetic data objects among receivers. According to the knowledge used

to construct the leaked data, e valuates the innocence of every involved party and

107

identifies the leaker(s) with a very low error rate.

We omit the detailed decryption of the identification algorithms in this dissertation; more

details of ReLiShare can be found in [ZXG20].

5.2.3 Evaluation

We implement a prototype of ReLiShare sharing system in C++ and the knowledge-based

leaker identification algorithm in Python. Our experiments using real world datasets show

the efficiency and effectiveness of ReLiShare. With 1-out-of-2 OT extension [ALS13] and the

Handyman dataset [Hea19], it only takes about half a minute for a sender to share more than

one million data objects to a receiver. The computation and network overhead for generating

Merkle Tree based credentials are also practical to be deployed. The identification evaluation

results show that ReLiShare can provide > 99.99% identification accuracy in different leakage

scenarios with a relatively small number of data for allocation.

More evaluation results can be found in [ZXG20].

5.3 Moving Towards Data-centric Security

Duo to the constraints of today’s Internet architecture deployment, EL PASSO and ReL-

iShare are implemented over TCP/IP and thus is a mix of two security models. For example,

in EL PASSO, the client needs to set up a secured channel to the service website because this

is required by the modern web browsers (e.g., Chrome marks all non-HTTPS websites as

unsafe). Such a mix can be found in other data-centric security solutions in today’s Internet,

like the signed HTTP objects in the Web Package, the data objects in IPFS, the verifiable

credential object in Verifiable Credential. The discrepancy between the two security models

will inevitably result in more complexity. For example, when fetching a signed HTTP object,

the client still needs to decide which IP address to connect. Similarly, in IPFS, a mapping

108

between an IPFS content identifier and IP address is also needed to fulfill the mismatch

between channel and data centricity.

In comparison, NDN’s way of using named secured data and stateful forwarding is to

remove the discrepancy by providing a coherent data-centric network-to-application solution

suite.

109

CHAPTER 6

Conclusion

In this dissertation, we describe the two security models and analyze their difference from

the application perspective. We highlight that what applications need is secured data rather

than secured channels, and it is an observed new trend that both the network community and

application community are moving towards the same direction from channel-based security

to data-centric security.

When implementing data-centric security in the application layer over today’s Internet,

it can be a signed HTTP object, an EL PASSO credential, and so on. However, addi-

tional complexity is needed for application-layer data-centric security solutions to fit today’s

deployed Internet architecture and the security model. The root cause is the discrepancy be-

tween the deployed channel-based network and network security model and the application

layer data-centric security solutions. In comparison, NDN implements data-centric security

in both the network and application layer in a coherent way, by making named secured data

the fundamental building block of communications and adopting stateful forwarding. NDN

provides a data-centric communication model by naming the secured data for networking

purposes, thus removing the discrepancy.

Through the systems we described in this dissertation, we show the new way of doing

network security, namely, using NDN’s named secured data and stateful forwarding, can be

used to address security issues that are intractable for channel-based security. Specifically,

we confirm the desired properties of NDN security:

• Names provide rich application layer semantics and allow to construct fine-grained

110

security policies

• Secured data is friendly to asynchronous communication.

• Stateful forwarding provides traffic state and insights that are needed for DDoS miti-

gation.

Regarding the deployment of NDN and NDN security, there are two feasible ways. The

first way is to start deployment from edge networks, including smart home networks, vehic-

ular networks, data center networks, etc. This is because NDN’s named secured data allows

simple and efficient security solutions in edge networks, providing incentives for stakeholders.

In addition, the deployment at the edge does not dependent on the NDN deployment in the

Internet. An example is the Sovereign, which can facilitate the security and privacy of smart

home systems, and the deployment cost is low as it requires no infrastructure change. When

scattered end systems start to adopt NDN based systems, it can push a larger and deeper

NDN deployment to connects the NDN islands.

The second way is to build overlay NDN networks on the current Internet. The first

potential motivation is DDoS mitigation. As shown in Section 4.2, FITT can be deployed

over today’s CDN infrastructure without hardware update, and at the same time, offer

incentives to CDN service providers by supporting both CDN and DDoS functions with a

lower resource overhead. Other motivations of overlay NDN networks can be distributed

applications. Well-known overlay networks that have been successfully deployed include

(i) the overlay P2P networks deployed with BitCoin, Ethereum, and other cryptocurrency

systems, and (ii) the P2P network used for onion routing. The commonality of these overlay

network systems is they are needed by a certain distributed application (i.e., cryptocurrency

and onion routing). Therefore, to push a large-scale NDN overlay deployment, an important

aspect is to explore the NDN based distributed applications. The design of DLedger has

shown the potential benefits of using NDN as the underlying P2P network for a distributed

system.

111

Future works can continue to address more security issues with the new way of providing

security, namely the data-centric security model and especially NDN’s named secured data.

Considering that the data-centric security model fits non-infrastructure networks, NDN secu-

rity researchers can focus on building usable security solutions to edge networks. In addition,

since the use of secured data alleviates the dependency of centralized services, another aspect

of the future work can be to support distributed application systems.

112

REFERENCES

[AAB17] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. “Understanding the mirai botnet.” In USENIX Security Sympo-
sium, 2017.

[AB17] Noor Abani, Torsten Braun, et al. “Proactive caching with mobility prediction
under uncertainty in information-centric networks.” In Proceedings of the 4th
ACM Conference on Information-Centric Networking, pp. 88–97. ACM, 2017.

[ABB18] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-
nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, et al. “Hyperledger fabric: a distributed operating
system for permissioned blockchains.” In Proceedings of the thirteenth EuroSys
conference, pp. 1–15, 2018.

[ABC19] Josh Aas, Richard Barnes, Benton Case, Zakir Durumeric, Peter Eckersley, Alan
Flores-López, J Alex Halderman, Jacob Hoffman-Andrews, James Kasten, Eric
Rescorla, et al. “Let’s Encrypt: An Automated Certificate Authority to En-
crypt the Entire Web.” In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pp. 2473–2487, 2019.

[ABH17] Gergely Alpár, Fabian van den Broek, Brinda Hampiholi, Bart Jacobs, Wouter
Lueks, and Sietse Ringers. “IRMA: practical, decentralized and privacy-friendly
identity management using smartphones.” In 10th Workshop on Hot Topics in
Privacy Enhancing Technologies, HotPETs, 2017.

[AHK03] Rakesh Agrawal, Peter J Haas, and Jerry Kiernan. “Watermarking relational
data: framework, algorithms and analysis.” The International Journal on Very
Large Data Bases, 12(2):157–169, 2003.

[AK02] Rakesh Agrawal and Jerry Kiernan. “Watermarking relational databases.” In
VLDB’02: Proceedings of the 28th International Conference on Very Large
Databases, pp. 155–166. Elsevier, 2002.

[Aka19] Akamai. “Akamai DDoS Protection.”, 2019. https://www.akamai.com/us/en/

resources/ddos-protection.jsp, Accessed: 2021-06-08.

[Aka21] Akamai Technologies. “What does CDN stand for? CDN Definition.”, 2021.
https://www.akamai.com/us/en/cdn/what-is-a-cdn.jsp, Accessed: 2021-
06-08.

113

https://www.akamai.com/us/en/resources/ddos-protection.jsp
https://www.akamai.com/us/en/resources/ddos-protection.jsp
https://www.akamai.com/us/en/cdn/what-is-a-cdn.jsp

[ALS13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. “More
efficient oblivious transfer and extensions for faster secure computation.” In Pro-
ceedings of the 2013 ACM SIGSAC conference on Computer & communications
security, pp. 535–548. ACM, 2013.

[Ano19] Anonymous authors. “A Secure Sign-On Protocol for Smart Homes over Named
Data Networking.” IEEE Communications Magazine, 57(7):62–68, July 2019.

[App21] Apple Inc. “Sign In with Apple.”, 2021. https://developer.apple.com/

sign-in-with-apple/, Accessed: 2021-06-08.

[ATN19] Jari Arkko, Brian Trammell, Mark Nottingham, Christian Huitema, Martin
Thomson, Jeff Tantsura, and Niels ten Oever. “Considerations on Internet
Consolidation and the Internet Architecture.” Internet-Draft draft-arkko-iab-
internet-consolidation-01, IETF Working Draft, March 2019.

[BBC09] Patrik Bichsel, Carl Binding, Jan Camenisch, Thomas Groß, Tom Heydt-
Benjamin, Dieter Sommer, and Greg Zaverucha. “Cryptographic Protocols of
the Identity Mixer Library.” Technical Report RZ 3730, IBM Research – Zurich,
2009.

[BBC19] BBC News. “British Airways faces record £183m fine for data breach.”, 2019.
https://www.bbc.com/news/business-48905907, Accessed: 2021-06-08.

[BCR16] Hitesh Ballani, Yatin Chawathe, Sylvia Ratnasamy, Timothy Roscoe, and Scott
Shenker. “Off by default!” 2016.

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. “Compact multi-signatures for
smaller blockchains.” In International Conference on the Theory and Application
of Cryptology and Information Security, pp. 435–464. Springer, 2018.

[Ben14] Juan Benet. “IPFS - Content Addressed, Versioned, P2P File System.”, 2014.
arXiv:1407.3561.

[BGW20] Dan Boneh, Sergey Gorbunov, Riad Wahby, Hoeteck Wee, and Zhen-
fei Zhang. “BLS Signatures.” Internet-Draft draft-irtf-cfrg-bls-signature-
04, IETF Secretariat, September 2020. https://tools.ietf.org/html/

draft-irtf-cfrg-bls-signature-04.

[BHG13] Emmanuel Baccelli, Oliver Hahm, Mesut Gunes, Matthias Wahlisch, and
Thomas C Schmidt. “RIOT OS: Towards an OS for the Internet of Things.”
In 2013 IEEE conference on computer communications workshops (INFOCOM
WKSHPS), pp. 79–80. IEEE, 2013.

114

https://developer.apple.com/sign-in-with-apple/
https://developer.apple.com/sign-in-with-apple/
https://www.bbc.com/news/business-48905907
https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04
https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04

[BHM19] R. Barnes, J. Hoffman-Andrews, D. McCarney, and J. Kasten. “Automatic Cer-
tificate Management Environment (ACME).” RFC 8555, RFC Editor, March
2019.

[Bla19] Michael Blackman. “Hospital Health IT Interoperability.”, 2019. https://www.

mckesson.com/blog/rise-in-patient-data-exchanged/, Accessed: 2021-06-
08.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures from the Weil
Pairing.” In Colin Boyd, editor, Advances in Cryptology — ASIACRYPT 2001,
pp. 514–532, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[Bra07] Stefan Brands. “The problem(s) with OpenID.”, 2007. https://web.archive.

org/web/20110516013258/http://www.untrusted.ca/cache/openid.html,
Accessed: 2021-06-08.

[BS04] F. Baker and P. Savola. “Ingress Filtering for Multihomed Networks.” BCP 84,
RFC Editor, March 2004.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. “Ciphertext-policy attribute-
based encryption.” In 2007 IEEE symposium on security and privacy (SP’07),
pp. 321–334. IEEE, 2007.

[Cal21] Californians for Consumer Privacy. “California Consumer Privacy Act (CCPA).”,
2021. https://www.caprivacy.org, Accessed: 2021-06-08.

[CCJ11] Eun Kyoung Choe, Sunny Consolvo, Jaeyeon Jung, Beverly Harrison, and Julie A
Kientz. “Living in a glass house: a survey of private moments in the home.” In
Proceedings of the 13th international conference on Ubiquitous computing, pp.
41–44, 2011.

[Cen20] Centers for Medicare and Midcaid Services. “Data.CMS.gov.”, 2020. https:

//data.cms.gov/, Accessed: 2021-06-08.

[CER99] CERT Coordination Center. “CERT Incident Note IN-99-04.”, 1999.
https://web.archive.org/web/20081115163511/http://www.cert.org/

incident_notes/IN-99-04.html, Accessed: 2021-06-08.

[Cho02] Gihwan Cho. “Using predictive prefetching to improve location awareness of mo-
bile information service.” In International Conference on Computational Science,
pp. 1128–1136. Springer, 2002.

[Cim17] Catalin Cimpanu. “14766 Let’s Encrypt SSL Certificates Issued to PayPal
Phishing Sites.”, 2017. https://www.bleepingcomputer.com/news/security/

14-766-lets-encrypt-ssl-certificates-issued-to-paypal-phishing-sites/,
Accessed: 2021-06-08.

115

https://www.mckesson.com/blog/rise-in-patient-data-exchanged/
https://www.mckesson.com/blog/rise-in-patient-data-exchanged/
https://web.archive.org/web/20110516013258/http://www.untrusted.ca/cache/openid.html
https://web.archive.org/web/20110516013258/http://www.untrusted.ca/cache/openid.html
https://www.caprivacy.org
https://data.cms.gov/
https://data.cms.gov/
https://web.archive.org/web/20081115163511/http://www.cert.org/incident_notes/IN-99-04.html
https://web.archive.org/web/20081115163511/http://www.cert.org/incident_notes/IN-99-04.html
https://www.bleepingcomputer.com/news/security/14-766-lets-encrypt-ssl-certificates-issued-to-paypal-phishing-sites/
https://www.bleepingcomputer.com/news/security/14-766-lets-encrypt-ssl-certificates-issued-to-paypal-phishing-sites/

[Clo21] CloudFlare. “CloudFlare Advanced DDoS Attack Protection.”, 2021. https:

//www.cloudflare.com/ddos/, Accessed: 2021-06-08.

[Com16] European Commission. “General Data Protection Regulation (GDPR), chapter
II, Article 5.” https://gdpr-info.eu/art-5-gdpr/, 2016. Accessed: 2021-06-
08.

[CPZ16] Jianxun Cao, Dan Pei, Xiaoping Zhang, Beichuan Zhang, and Youjian Zhao.
“Fetching popular data from the nearest replica in NDN.” In 2016 25th Inter-
national Conference on Computer Communication and Networks (ICCCN), pp.
1–9. IEEE, 2016.

[Dep20] Department of Financial Services. “Report on Investigation of Twitter’s July 15,
2020 Cybersecurity Incident and the Implications for Election Security.”, 2020.

[DK09] Pralhad Deshpande, Anand Kashyap, et al. “Predictive methods for improved
vehicular WiFi access.” In Proceedings of the 7th international conference on
Mobile systems, applications, and services, pp. 263–276. ACM, 2009.

[Doo20] DoorDash Blog. “Important security notice about your
DoorDash account.”, 2020. https://blog.doordash.com/

important-security-notice-about-your-doordash-account-ddd90ddf5996#

46h35gr24e, Accessed: 2021-06-08.

[EE 13] EE Times. “MCU market turns to 32-bits and ARM.” https://www.eetimes.

com/mcu-market-turns-to-32-bits-and-arm/, 2013. Accessed: 2021-01-24.

[FK11] S. Frankel and S. Krishnan. “IP Security (IPsec) and Internet Key Exchange
(IKE) Document Roadmap.” RFC 6071, RFC Editor, February 2011. http:

//www.rfc-editor.org/rfc/rfc6071.txt.

[FKK11] A. Freier, P. Karlton, and P. Kocher. “The Secure Sockets Layer (SSL) Protocol
Version 3.0.” RFC 6101, RFC Editor, August 2011. http://www.rfc-editor.

org/rfc/rfc6101.txt.

[FKS15] Daniel Fett, Ralf Küsters, and Guido Schmitz. “SPRESSO: A secure, privacy-
respecting single sign-on system for the web.” In 22nd Conference on Computer
and Communications Security, CCS. ACM, 2015.

[FS00] P. Ferguson and D. Senie. “Network Ingress Filtering: Defeating Denial of Service
Attacks which employ IP Source Address Spoofing.” BCP 38, RFC Editor, May
2000.

[GDP21] GDPR.eu. “The EU General Data Protection Regulation (GDPR).”, 2021.
https://gdpr.eu/, Accessed: 2021-06-08.

116

https://www.cloudflare.com/ddos/
https://www.cloudflare.com/ddos/
https://gdpr-info.eu/art-5-gdpr/
https://blog.doordash.com/important-security-notice-about-your-doordash-account-ddd90ddf5996#46h35gr24e
https://blog.doordash.com/important-security-notice-about-your-doordash-account-ddd90ddf5996#46h35gr24e
https://blog.doordash.com/important-security-notice-about-your-doordash-account-ddd90ddf5996#46h35gr24e
https://www.eetimes.com/mcu-market-turns-to-32-bits-and-arm/
https://www.eetimes.com/mcu-market-turns-to-32-bits-and-arm/
http://www.rfc-editor.org/rfc/rfc6071.txt
http://www.rfc-editor.org/rfc/rfc6071.txt
http://www.rfc-editor.org/rfc/rfc6101.txt
http://www.rfc-editor.org/rfc/rfc6101.txt
https://gdpr.eu/

[GGK15] Steven Goldfeder, Rosario Gennaro, Harry Kalodner, Joseph Bonneau, Joshua
Kroll, Edward Felten, and Arvind Narayanan. “Securing Bitcoin wallets via a
new DSA/ECDSA threshold signature scheme.”, 2015.

[GGN16] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. “Threshold-Optimal
DSA/ECDSA Signatures and an Application to Bitcoin Wallet Security.” In
Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider, editors, Applied Cryp-
tography and Network Security, pp. 156–174, Cham, 2016. Springer International
Publishing.

[GN14] Ruti Gafni and Dudu Nissim. “To social login or not login? Exploring factors
affecting the decision.” Issues in Informing Science and Information Technology,
11(1), 2014.

[Goo12] Jason Goode. “The importance of identity security.” Computer Fraud & Security,
2012(1), 2012.

[GS18a] Dennis Grewe, Sebastian Schildt, et al. “ADePt: Adaptive Distributed Content
Prefetching for Information-Centric Connected Vehicles.” In 2018 IEEE 87th
Vehicular Technology Conference (VTC Spring), pp. 1–5. IEEE, 2018.

[GS18b] Ishu Gupta and Ashutosh Kumar Singh. “A Probabilistic Approach for Guilty
Agent Detection using Bigraph after Distribution of Sample Data.” Procedia
Computer Science, 125:662–668, 2018.

[GS19] Ishu Gupta and Ashutosh Kumar Singh. “Dynamic threshold based information
leaker identification scheme.” Information Processing Letters, 147:69–73, 2019.

[GTU13] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang. “DoS and DDoS in Named Data
Networking.” In 2013 22nd International Conference on Computer Communica-
tion and Networks (ICCCN), July 2013.

[GW16] Dennis Grewe, Marco Wagner, et al. “PeRCeIVE: Proactive caching in ICN-
based VANETs.” In 2016 IEEE Vehicular Networking Conference (VNC), pp.
1–8. IEEE, 2016.

[GWL06] Fei Guo, Jianmin Wang, and Deyi Li. “Fingerprinting relational databases.” In
Proceedings of the 2006 ACM symposium on Applied computing, pp. 487–492,
2006.

[Hea19] New York State Department of Health. “Hospital Inpatient Discharges
(SPARCS De-Identified): 2015.”, 2019. https://health.data.ny.gov/Health/
Hospital-Inpatient-Discharges-SPARCS-De-Identified/82xm-y6g8, Ac-
cessed: 2021-06-08.

117

https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/82xm-y6g8
https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/82xm-y6g8

[HG04] Mark Handley and Adam Greenhalgh. “Steps towards a DoS-resistant internet
architecture.” In Proceedings of the ACM SIGCOMM workshop on Future direc-
tions in network architecture, pp. 49–56. ACM, 2004.

[HPC10] Raju Halder, Shantanu Pal, and Agostino Cortesi. “Watermarking Techniques
for Relational Databases: Survey, Classification and Comparison.” J. UCS,
16(21):3164–3190, 2010.

[HRS17] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. “Bringing the web up to
speed with WebAssembly.” In 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI, 2017.

[HZ16] Zhiwen Hu, Zijie Zheng, et al. “Game theoretic approaches for wireless proactive
caching.” IEEE Communications Magazine, 54(8):37–43, 2016.

[IC 15] IC Insights, Inc. “Microcontroller Sales Regain Momentum Af-
ter Slump.” https://www.icinsights.com/news/bulletins/

Microcontroller-Sales-Regain-Momentum-After-Slump/, 2015. Accessed:
2021-06-08.

[IC 18a] IC Insights, Inc. “MCUs Sales to Reach Record-High Annual Rev-
enues Through 2022.” https://www.icinsights.com/news/bulletins/

MCUs-Sales-To-Reach-RecordHigh-Annual-Revenues-Through-2022/, 2018.
Accessed: 2021-06-08.

[IC 18b] IC Insights, Inc. “Microcontrollers Will Regain Growth Af-
ter 2019 Slump.” https://www.icinsights.com/news/bulletins/

Microcontrollers-Will-Regain-Growth-After-2019-Slump/, 2018. Ac-
cessed: 2021-06-08.

[ISO15] ISO/IEC JTC 1/SC 27 Information security, cybersecurity and privacy protec-
tion. “ISO/IEC 27033-1:2015 Network Security Overview and Concepts.” Tech-
nical report, ISO Standard, 2015.

[ISO19] ISO/IEC JTC 1/SC 27 Information security, cybersecurity and privacy protec-
tion. “ISO/IEC 27701:2019: Extension to ISO/IEC 27001 and ISO/IEC 27002
for privacy information management — Requirements and guidelines.” Technical
report, ISO Standard, 2019.

[IWS04] Blake Ives, Kenneth R Walsh, and Helmut Schneider. “The domino effect of
password reuse.” Communications of the ACM, 47(4), 2004.

[JB14] Xiaoke Jiang and Jun Bi. “ncdn: Cdn enhanced with ndn.” In 2014 IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS),
pp. 440–445. IEEE, 2014.

118

https://www.icinsights.com/news/bulletins/Microcontroller-Sales-Regain-Momentum-After-Slump/
https://www.icinsights.com/news/bulletins/Microcontroller-Sales-Regain-Momentum-After-Slump/
https://www.icinsights.com/news/bulletins/MCUs-Sales-To-Reach-RecordHigh-Annual-Revenues-Through-2022/
https://www.icinsights.com/news/bulletins/MCUs-Sales-To-Reach-RecordHigh-Annual-Revenues-Through-2022/
https://www.icinsights.com/news/bulletins/Microcontrollers-Will-Regain-Growth-After-2019-Slump/
https://www.icinsights.com/news/bulletins/Microcontrollers-Will-Regain-Growth-After-2019-Slump/

[JBS15] M. Jones, J. Bradley, and N. Sakimura. “JSON Web Signature (JWS).” RFC
7515, RFC Editor, May 2015. http://www.rfc-editor.org/rfc/rfc7515.txt.

[JK98] Zhimei Jiang and Leonard Kleinrock. “Web prefetching in a mobile environment.”
IEEE Personal Communications, 5(5):25–34, 1998.

[Joh21] Jay Tillay Johnson. “Recommendations for Distributed Energy Resource Access
Control.” Technical report, Sandia National Lab.(SNL-NM), Albuquerque, NM
(United States), 2021.

[JST09] Van Jacobson, Diana K Smetters, James D Thornton, Michael F Plass, Nicholas H
Briggs, and Rebecca L Braynard. “Networking named content.” In Proceedings
of the 5th international conference on Emerging networking experiments and tech-
nologies, pp. 1–12, 2009.

[JWS03] Cheng Jin, Haining Wang, and Kang G Shin. “Hop-count filtering: an effective
defense against spoofed DDoS traffic.” In Proceedings of the 10th ACM conference
on Computer and communications security, pp. 30–41. ACM, 2003.

[KL15] Ryangsoo Kim, Hyuk Lim, et al. “Prefetching-based data dissemination in vehic-
ular cloud systems.” IEEE Transactions on Vehicular Technology, 65(1):292–306,
2015.

[KMW07] Balachander Krishnamurthy, Delfina Malandrino, and Craig E Wills. “Measur-
ing privacy loss and the impact of privacy protection in web browsing.” In 3rd
symposium on Usable privacy and security, SOUPS. ACM, 2007.

[LB16] Huichen Lin and Neil W Bergmann. “IoT privacy and security challenges for
smart home environments.” Information, 7(3):44, 2016.

[Let20] Let’s Encrypt. “Let’s Encrypt.”, 2020. https://letsencrypt.org/, Accessed:
2021-06-08.

[LSJ03] Yingjiu Li, Vipin Swarup, and Sushil Jajodia. “Constructing a virtual primary
key for fingerprinting relational data.” In Proceedings of the 3rd ACM workshop
on Digital rights management, pp. 133–141, 2003.

[LSJ05] Yingjiu Li, Vipin Swarup, and Sushil Jajodia. “Fingerprinting relational
databases: Schemes and specialties.” IEEE Transactions on Dependable and
Secure Computing, 2(1):34–45, 2005.

[LWD04] Siyuan Liu, Shuhong Wang, Robert H Deng, and Weizhong Shao. “A block ori-
ented fingerprinting scheme in relational database.” In International conference
on information security and cryptology, pp. 455–466. Springer, 2004.

119

http://www.rfc-editor.org/rfc/rfc7515.txt
https://letsencrypt.org/

[Mar21] MarketWatch, Inc. “IoT Microcontroller Market 2020 Global Industry Size,
Opportunities, Key Vendors Analysis, Business Strategy, Future Plans, Com-
petitive Landscape and Outlook 2023.” https://www.marketwatch.com/

press-release, 2021. Accessed: 2021-06-08.

[MAZ17] Spyridon Mastorakis, Alexander Afanasyev, and Lixia Zhang. “On the Evolu-
tion of ndnSIM: an Open-Source Simulator for NDN Experimentation.” ACM
Computer Communication Review, July 2017.

[MCC14] Ge Ma, Zhen Chen, Junwei Cao, Zhenhua Guo, Yixin Jiang, and Xiaobin Guo.
“A tentative comparison on CDN and NDN.” In 2014 IEEE international con-
ference on systems, man, and cybernetics (SMC), pp. 2893–2898. IEEE, 2014.

[MG16] Giulia Mauri, Mario Gerla, et al. “Optimal content prefetching in NDN
vehicle-to-infrastructure scenario.” IEEE Transactions on Vehicular Technology,
66(3):2513–2525, 2016.

[MGS10a] Erika McCallister, Tim Grance, and Karen Scarfone. Guide to protecting the con-
fidentiality of personally identifiable information. National Institute of Standards
and Technology (NIST) Special Publication 800-122, 2010.

[MGS10b] Erika McCallister, Tim Grance, and Karen Scarfone. Guide to protecting the con-
fidentiality of personally identifiable information. National Institute of Standards
and Technology (NIST) Special Publication 800-122, 2010.

[Ndn21] Ndn-cxx Contributors. “ndn-cxx: NDN C++ library with eXperimental eXten-
sions.” https://github.com/named-data/ndn-cxx, 2021. Accessed: 2021-06-
08.

[Neu21] Neustar. “Neustar Defense and Performance.”, 2021. https://www.security.

neustar/digital-defense/ddos-protection, Accessed: 2021-06-08.

[NFD21] NFD Contributors. “NFD - Named Data Networking Forwarding Daemon.”
https://github.com/named-data/nfd, 2021. Accessed: 2021-06-08.

[NN08] Anthony J Nicholson and Brian D Noble. “Breadcrumbs: forecasting mobile
connectivity.” In Proceedings of the 14th ACM international conference on Mobile
computing and networking, pp. 46–57. ACM, 2008.

[Nor21] Nordic Semiconductor Inc. “Nordic nRF52840.” https://www.nordicsemi.

com/Products/Low-power-short-range-wireless/nRF52840, 2021. Accessed:
2021-06-08.

[OBM18] Aleksandr Ometov, Sergey Bezzateev, Niko Mäkitalo, Sergey Andreev, Tommi
Mikkonen, and Yevgeni Koucheryavy. “Multi-factor authentication: A survey.”
Cryptography, 2(1):1, 2018.

120

https://www.marketwatch.com/press-release
https://www.marketwatch.com/press-release
https://github.com/named-data/ndn-cxx
https://www.security.neustar/digital-defense/ddos-protection
https://www.security.neustar/digital-defense/ddos-protection
https://github.com/named-data/nfd
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52840
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52840

[Orm03] H. Orman. “The Morris worm: a fifteen-year perspective.” IEEE Security &
Privacy, 1(5):35–43, 2003.

[OSZ20] Eric Osterweil, Angelos Stavrou, and Lixia Zhang. “21 Years of Distributed
Denial-of Service: Current State of Affairs.” Computer, 53(7):88–92, 2020.

[PG09] Panagiotis Papadimitriou and H. Garcia-Molina. “A Model for Data Leakage
Detection.” In 2009 IEEE 25th International Conference on Data Engineering,
pp. 1307–1310, March 2009.

[PG11] P. Papadimitriou and H. Garcia-Molina. “Data Leakage Detection.” IEEE Trans-
actions on Knowledge and Data Engineering, 23(1):51–63, Jan 2011.

[prn18] prnewswire.com. “The DDoS protection and mitigation market size is expected to
grow from USD 1.94 billion in 2018 to USD 4.10 billion by 2023, at a Compound
Annual Growth Rate (CAGR) of 16.1.” https://www.prnewswire.com/news-
releases/the-ddos-protection-and-mitigation-market-size-is-expected-to-grow-
from-usd-1-94-billion-in-2018-to-usd-4-10-billion-by-2023–at-a-compound-
annual-growth-rate-cagr-of-16-1-300645633.html, 2018.

[Pro21] The Ethereum Project. “Ethereum 2.0 Specifications.”, 2021. https://github.
com/ethereum/eth2.0-specs, Accessed: 2021-06-08.

[PS16] David Pointcheval and Olivier Sanders. “Short randomizable signatures.” In
Cryptographers’ Track at the RSA Conference. Springer, 2016.

[PS18] David Pointcheval and Olivier Sanders. “Reassessing security of randomizable
signatures.” In Cryptographers’ Track at the RSA Conference, pp. 319–338.
Springer, 2018.

[Rab05] Michael O Rabin. “How To Exchange Secrets with Oblivious Transfer.” IACR
Cryptology ePrint Archive, 2005:187, 2005.

[Res18] E. Rescorla. “The Transport Layer Security (TLS) Protocol Version 1.3.” RFC
8446, RFC Editor, August 2018.

[RL96] Ronald L Rivest and Butler Lampson. “SDSI-a simple distributed security in-
frastructure.” 1996.

[Ros14] Christian Rossow. “Amplification Hell: Revisiting Network Protocols for DDoS
Abuse.” In NDSS, 2014.

[RST11] Andre B Reis, Susana Sargento, and Ozan K Tonguz. “On the performance of
sparse vehicular networks with road side units.” In 2011 IEEE 73rd Vehicular
Technology Conference (VTC Spring), pp. 1–5. IEEE, 2011.

121

https://github.com/ethereum/eth2.0-specs
https://github.com/ethereum/eth2.0-specs

[RZ13] Ying Rao, Huachun Zhou, et al. “Proactive caching for enhancing user-side
mobility support in named data networking.” In 2013 Seventh International
Conference on Innovative Mobile and Internet Services in Ubiquitous Computing,
pp. 37–42. IEEE, 2013.

[SAN21] SANS Institute. “SANS: Network Security Resources.”, 2021. https://www.

sans.org/network-security/, Accessed: 2021-06-08.

[SG20] Ashutosh Kumar Singh and Ishu Gupta. “Online information leaker identification
scheme for secure data sharing.” Multimedia Tools and Applications, pp. 1–18,
2020.

[Shi21] Mitsunari Shigeo. “BLS threshold signature.”, 2021. https://github.com/

herumi/bls, Accessed: 2021-06-08.

[Sim20] SimilarTech.com. “Market share & web usage statistics: OpenID.”, 2020. https:
//www.similartech.com/technologies/openid, Accessed: 2021-06-08.

[SJ09] Diana Smetters and Van Jacobson. “Securing network content.” Technical re-
port, PARC, 2009.

[SKS20] Yumi Sakemi, Tetsutaro Kobayashi, Tsunekazu Saito, and Riad Wahby. “Pairing-
Friendly Curves.” Internet-Draft draft-irtf-cfrg-pairing-friendly-curves-09,
IETF Secretariat, November 2020. http://www.ietf.org/internet-drafts/

draft-irtf-cfrg-pairing-friendly-curves-09.txt.

[SLC19] Manu Sporny, Dave Longley, and David Chadwick. “Verifiable Credentials Data
Model 1.0.” Technical Report W3C Recommendation 19 November 2019, W3C,
November 2019.

[Sma15] SmartThingsCommunity Contributors. “turn-it-on-when-it-opens.”
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/

master/smartapps/smartthings/turn-it-on-when-it-opens.src/

turn-it-on-when-it-opens.groovy, 2015. Accessed: 2021-06-08.

[Sma20] SmartThingsCommunity Contributors. “Example code in SmartThings
SDK for Direct Connected Devices for C.” https://github.com/

SmartThingsCommunity/st-device-sdk-c/blob/master/example/example.c,
2020. Accessed: 2021-06-08.

[Sma21] SmartThingsCommunity Contributors. “SmartThingsCommunity GitHub.”
https://github.com/SmartThingsCommunity, 2021. Accessed: 2021-06-08.

[SS75] Jerome H Saltzer and Michael D Schroeder. “The protection of information in
computer systems.” Proceedings of the IEEE, 63(9):1278–1308, 1975.

122

https://www.sans.org/network-security/
https://www.sans.org/network-security/
https://github.com/herumi/bls
https://github.com/herumi/bls
https://www.similartech.com/technologies/openid
https://www.similartech.com/technologies/openid
http://www.ietf.org/internet-drafts/draft-irtf-cfrg-pairing-friendly-curves-09.txt
http://www.ietf.org/internet-drafts/draft-irtf-cfrg-pairing-friendly-curves-09.txt
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/turn-it-on-when-it-opens.src/turn-it-on-when-it-opens.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/turn-it-on-when-it-opens.src/turn-it-on-when-it-opens.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/turn-it-on-when-it-opens.src/turn-it-on-when-it-opens.groovy
https://github.com/SmartThingsCommunity/st-device-sdk-c/blob/master/example/example.c
https://github.com/SmartThingsCommunity/st-device-sdk-c/blob/master/example/example.c
https://github.com/SmartThingsCommunity

[SWA17] Wentao Shang, Zhehao Wang, Alexander Afanasyev, Jeff Burke, and Lixia Zhang.
“Breaking out of the cloud: Local trust management and rendezvous in Named
Data Networking of Things.” In Proceedings of the Second International Confer-
ence on Internet-of-Things Design and Implementation, pp. 3–13, 2017.

[Tar08] Gábor Tardos. “Optimal probabilistic fingerprint codes.” Journal of the ACM
(JACM), 55(2):1–24, 2008.

[The13] The Squid Software Foundation. “Squid: Optimising Web Delivery.” http:

//www.squid-cache.org/, 2013. http://www.squid-cache.org/, Accessed:
2021-06-08.

[The14] The Smart Grid Interoperability Panel – Smart Grid Cybersecurity Committee.
“NISTIR 7628 Rev. 1: Guidelines for Smart Grid Cybersecurity.” Technical
report, NIST, 2014.

[The19a] The New York Times. “Capital One Data Breach Compromises Data of
Over 100 Million.”, 2019. https://www.nytimes.com/2019/07/29/business/

capital-one-data-breach-hacked.html, Accessed: 2021-06-08.

[The19b] The Wall Street Journal. “Amazon Investigates Employees Leak-
ing Data for Bribes.”, 2019. https://www.wsj.com/articles/

amazon-investigates-employees-leaking-data-for-bribes-1537106401,
Accessed: 2021-06-08.

[TST17] Samuel Tweneboah-Koduah, Knud Erik Skouby, and Reza Tadayoni. “Cyber
security threats to IoT applications and service domains.” Wireless Personal
Communications, 95(1):169–185, 2017.

[UJS13] Blase Ur, Jaeyeon Jung, and Stuart Schechter. “The current state of access
control for smart devices in homes.” In Workshop on Home Usable Privacy and
Security (HUPS), volume 29, pp. 209–218. HUPS 2014, 2013.

[Wik21a] Wikipedia contributors. “Forward secrecy.”, 2021. https://en.wikipedia.

org/wiki/Forward_secrecy, Accessed: 2021-06-08.

[Wik21b] Wikipedia contributors. “Network Security.”, 2021. https://en.wikipedia.

org/wiki/Network_security, Accessed: 2021-06-08.

[XF09] Hequn Xian and Dengguo Feng. “Leakage identification for secret relational data
using shadowed watermarks.” In 2009 International Conference on Communica-
tion Software and Networks, pp. 473–478. IEEE, 2009.

[YAC15] Yingdi Yu, Alexander Afanasyev, David Clark, kc claffy, Van Jacobson, and Lixia
Zhang. “Schematizing Trust in Named Data Networking.” In Proc. of ACM ICN,
2015.

123

http://www.squid-cache.org/
http://www.squid-cache.org/
http://www.squid-cache.org/
https://www.nytimes.com/2019/07/29/business/capital-one-data-breach-hacked.html
https://www.nytimes.com/2019/07/29/business/capital-one-data-breach-hacked.html
https://www.wsj.com/articles/amazon-investigates-employees-leaking-data-for-bribes-1537106401
https://www.wsj.com/articles/amazon-investigates-employees-leaking-data-for-bribes-1537106401
https://en.wikipedia.org/wiki/Forward_secrecy
https://en.wikipedia.org/wiki/Forward_secrecy
https://en.wikipedia.org/wiki/Network_security
https://en.wikipedia.org/wiki/Network_security

[Yas20] Jeffrey Yasskin. “Signed HTTP Exchanges.” Internet-Draft draft-yasskin-http-
origin-signed-responses-09, IETF Secretariat, July 2020. http://www.ietf.org/
internet-drafts/draft-yasskin-http-origin-signed-responses-09.txt.

[Yas21] Jeffrey Yasskin. “Use Cases and Requirements for Web Packages.” Internet-
Draft draft-yasskin-wpack-use-cases-02, IETF Secretariat, April 2021. https:

//www.ietf.org/archive/id/draft-yasskin-wpack-use-cases-02.txt.

[YWA05] Xiaowei Yang, David Wetherall, and Thomas Anderson. “A DoS-limiting net-
work architecture.” In ACM SIGCOMM Computer Communication Review, vol-
ume 35, pp. 241–252. ACM, 2005.

[ZAB14] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, Patrick Crow-
ley, Christos Papadopoulos, Lan Wang, Beichuan Zhang, et al. “Named data
networking.” ACM SIGCOMM Comp. Comm. Review, 2014.

[ZAZ17] Zhiyi Zhang, Alexander Afanasyev, and Lixia Zhang. “NDNCERT: Universal
Usable Trust Management for NDN.” In Proceedings of the 4th ACM Conference
on Information-Centric Networking, ICN ’17, pp. 178–179, New York, NY, USA,
2017. ACM.

[ZGM20] Zhiyi Zhang, Yu Guan, Xinyu Ma, Tianyuan Yu, and Lixia Zhang. “Sovereign:
User-Controlled Smart Homes.”, 2020. arXiv:2006.06131.

[ZKS21] Zhiyi Zhang, Micha l Król, Alberto Sonnino, Lixia Zhang, and Etienne Rivière.
“EL PASSO: Efficient and Lightweight Privacy-preserving Single Sign On.” Pro-
ceedings on Privacy Enhancing Technologies (PETs), (2):70–87, 2021.

[ZLD19] Zhiyi Zhang, Tianxiang Li, John Dellaverson, and Lixia Zhang. “RapidVFetch:
Rapid Downloading of Named Data via Distributed V2V Communication.” In
2019 IEEE Vehicular Networking Conference (VNC), pp. 1–8. IEEE, 2019.

[ZLK21] Zhiyi Zhang, Siqi Liu, Randy King, and Lixia Zhang. “Supporting Multiparty
Signing over Named Data Networking.”, 2021. arXiv: 2106.04030.

[ZS20] Zhiyi Zhang and Junxiao Shi. “NDNCERT Specification 0.3.”
https://github.com/named-data/ndncert/wiki/NDNCERT-Protocol-0.3, 2020.
Accessed: 2021-06-08.

[ZVK21] Zhiyi Zhang, Vishrant Vasavada, Siva Kesava Reddy Kakarla, Angelos Stavrou,
Eric Osterweil, and Lixia Zhang. “Expect More from the Networking: DDoS
Mitigation by FITT in Named Data Networking.”, 2021. arXiv:1902.09033.

[ZVM19] Zhiyi Zhang, Vishrant Vasavada, Xinyu Ma, and Lixia Zhang. “DLedger:
An IoT-Friendly Private Distributed Ledger System Based on DAG.”, 2019.
arXiv:1902.09031.

124

http://www.ietf.org/internet-drafts/draft-yasskin-http-origin-signed-responses-09.txt
http://www.ietf.org/internet-drafts/draft-yasskin-http-origin-signed-responses-09.txt
https://www.ietf.org/archive/id/draft-yasskin-wpack-use-cases-02.txt
https://www.ietf.org/archive/id/draft-yasskin-wpack-use-cases-02.txt

[ZXG20] Zhiyi Zhang, Guorui Xiao, Yu Guan, Xinyu Ma, and Lixia Zhang. “ReL-
iShare: Reliable Leaker Identification in Sensitive Data Sharing.”, 2020.
arXiv:1907.11833.

[ZYR18] Zhiyi Zhang, Yingdi Yu, Sanjeev Kaushik Ramani, Alex Afanasyev, and Lixia
Zhang. “NAC: Automating access control via Named Data.” In MILCOM
2018-2018 IEEE Military Communications Conference (MILCOM), pp. 626–633.
IEEE, 2018.

[ZYZ18] Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Eric Newberry, Spyridon Mastorakis,
Yanbiao Li, Alexander Afanasyev, and Lixia Zhang. “An Overview of Secu-
rity Support in Named Data Networking.” IEEE Communications Magazine,
56(11):62–68, November 2018.

125

	Introduction
	The Development of Network Security
	Two Ways of Providing Network Security
	Design Security Solutions with Named Secured Data
	Bring Secured Data to Today's Network Systems
	Outline

	A Perspective of Network Security
	Network Security from Application's Perspective
	Channel-based Security
	Data-centric Security
	A Comparison
	Trust as a Central Piece of Network Security

	Data-centric Security Support in NDN
	A Brief Introduction to NDN
	Security Support of NDN
	Data Availability
	Authentication and Data Authenticity
	Named based Authorization
	Data Confidentiality and Access Control
	Content and Name Privacy

	Usable Security Solutions with Named Secured Data
	Sovereign: NDN Based Smart Home System
	Background and Motivation
	Design Overview
	Naming Conventions and Name-based Security Policies
	Distributed End-to-end Security Enforcement
	Integrating Sovereign Framework with Pub/Sub
	Evaluation

	FITT: DDoS Mitigation with NDN
	Background and Motivation
	TCP/IP Architecture as the Root Cause of DDoS
	DDoS in NDN
	Design of FITT
	Incremental Deployment
	Evaluation

	DLedger: Distributed Immutable Logging
	Background and Motivation
	Design of DLedger
	Evaluation

	RapidVFetch: Secured Data Fetching in Vehicular Network
	Background and Motivation
	Design of RapidVFetch
	Securing Vehicular Data Prefetching and Downloading
	Evaluation

	NDN-MPS: NDN Multiparty Trust Support
	Background and Motivation
	A New Trust Model
	Design of NDN-MPS
	Multisignature Trust Schema
	Evaluation

	Build Usable Security Solutions using Data-centric Security
	EL PASSO: Privacy-preserving Asynchronous Authentication
	Background and Motivation
	Design of EL PASSO
	Evaluation

	ReLiShare: Data Sharing with Reliable Leaker Identification
	Background and Motivation
	Design of ReLiShare
	Evaluation

	Moving Towards Data-centric Security

	Conclusion
	References

