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ABSTRACT
In an NDN network, when a producer application wants to
publish data, it registers the data’s name prefix P with the
local NDN forwarding Daemon (NFD) on the same host
machine; this registration informs the local NFD where to
forward Interests whose name falls under P . To propagate
the reachability to P beyond the local NFD requires addi-
tional mechanisms, such as running routing protocol. This
paper describes automatic prefix propagation protocol, an
alternative to running a full-featured routing protocol on host
machines connected to the NDN network via one or multi-
ple NDN gateway routers. The automatic prefix propagation
protocol uses the local configuration of NDN certificates and
the inferred presence of gateway router(s) to automatically
send remote registration request when necessary.

1. INTRODUCTION
Producer applications in the Named Data Networking

(NDN) architecture [10] express the intent to make data
available for retrieval by registering data’s prefixes with
the NDN forwarder(s) [3]. In the current management
NDN API, this intent takes the form of a command In-
terest [1] that is directed towards the routing informa-
tion base (RIB) manager running in the instance of the
NDN forwarder on the same machine as the producer
(local forwarder) [3]. If the request is authorized, the
RIB manager creates corresponding entries in the for-
warding information base (FIB) in the local forwarder,
allowing it to properly direct Interests with the regis-
tered prefix towards the producer application, if Inter-
ests cannot be satisfied by other means.

Directing Interests from the remote NDN forwarders
is a more complex issue, which is being addressed in a
number of ways: manual configuration, dynamic name
announcement protocols, and opportunistic data dis-
covery strategies. Different methods have different trade-
off between the implementation complexity, usage com-
plexity, and potential overhead in terms of unneces-
sary forwarded Interests. Manually configuring remote

forwarders has trivial implementation cost and, when
properly used, can result in minimal overhead. How-
ever, dealing with usage complexity is tedious and com-
plicated, unless a forwarding strategy relies on a pre-
defined naming convention to forward Interests in a
greedy fashion (e.g., using geo or hyperbolic coordinates
embedded in the data names [4,6]). The dynamic name
announcements, e.g., using a routing protocol such as
NLSR [4], minimizes the usage complexity and over-
head, but has significant implementation and deploy-
ment costs. Opportunistic data discovery, e.g., using
the AccessRouter strategy, is simple to use but has rel-
atively high implementation complexity and network
overhead.

This paper describes the automatic prefix propaga-
tion protocol, which minimizes the complexity and over-
heads in environments with one or more remote NDN
forwarders acting as NDN gateways.1 The protocol au-
tomatically triggers the remote prefix registration when
an application registers a prefix locally, provided that
(1) there is an active remote NDN gateway, and (2) the
forwarder possesses a private key and the correspond-
ing NDN certificate that matches the locally registered
namespace. The first condition is satisfied when the
“/localhop/nfd” prefix is present in the local RIB, e.g.,
configured by NDN auto-configuration [2]. The second
requirement is fulfilled when the user requests and in-
stalls an NDN certificate that covers the desired names-
pace in the local forwarder. Coverage of the NDN cer-
tificate is determined using a basic trust schema [9],
described in Section 3. Note that depending on which
namespace the user-installed NDN certificate corresponds
to, the remotely registered prefix can be shorter than
the one registered by the application. This allows the
forwarder to aggregate multiple local registrations into
one remote action, reducing communication and book-

1The current version of the protocol assumes a single
NDN gateway. In the future, the protocol will be extended
to multi-gateway environments.
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keeping overheads.
The rest of this report is organized as follows. Sec-

tion 2 demonstrates our motivation by an example. Sec-
tion 3 reviews key design issues and proposes our solu-
tions. At last section 5 concludes this report .

2. USE CASE EXAMPLE AND SECURITY
ASSUMPTIONS
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Figure 1: Use case example of prefix propagation

Figure 1 demonstrates how an Interest packet, i.e.,
“/ndn/ucla/alice/app1” in this example, gets forwarded
to the target producer application, say the app1 runs
on the host k.

Whenever NFD on the host k, receives prefix registra-
tion from a local app, it automatically creates a“remote
prefix registration” command directed toward the gate-
way router B. Thus, when receiving the Interest “/ndn
/ucla/alice/app1”, the gateway router B will know where
to forward such an Interest when data is not otherwise
available.

2.1 Applications Delegate Prefix Registration
Key to Local NFD

In this paper, we assume that local NFD will be given
the delegated keys by local applications and that these
keys are sufficient to generate valid signatures for pre-
fix registration. The key can either be a higher-level
namespace key, e.g., “/ndn/ucla/alice”’s key for prefix
“/ndn/ucla/alice/app1” to be registered, or a specialized
key for RIB operation only, e.g., a key with name “/ndn
/ucla/alice/nrd” can only be used to register/unregister
prefix “/ucla/alice”.

2.2 Hierarchical Trust Model of Remote NFD
NDN builds security into its architecture, and sup-

ports different trust models, by using semantically mean-
ingful name-based configurations. In our work, we as-
sume that the remote NFD adopts a hierarchical trust
model, i.e., remote NFD accepts a registration com-
mand for name “P1” only if the command is signed by

an identity whose name “P2” is the prefix of “P1”. For
example, only if the registration command for“/ndn/ucla
/alice” is signed by “/ndn/ucla/alice”, “/ndn/ucla”, “/ndn”
or “/”, can the remote NFD accept it.

A special case is that when a specialized key for reg-
istration is used, the remote NFD should also accept
the command. For example, a registration command
for “/ndn/ucla/alice” that is signed by “/ndn/ucla/alice
/nrd”.

2.3 Certificate Availability for Remote NFD
Another assumption is the certificate availability for

remote NFD: when verifying signatures created by the
local NFD, all nodes along the certificate chain are ac-
cessible to the remote NFD. For example, if a signature
is created by the local NFD using the identity“/ndn/ucla
/alice”, and the remote NFD’s trust anchor is “/ndn”, we
assume that the remote NFD can fetch certificates for
“/ndn/ucla/alice”, “/ndn/ucla” and “/ndn”.

3. DESIGN ISSUES AND SOLUTIONS
Essentially, prefix propagation is the host registers

a prefix, representing reachability to some of its local
applications, to the gateway router. In this section, we
focus on a series of key design issues and introduce our
considerations on tradeoffs and final solutions.

3.1 End Host Makes Propagations
Whenever required and feasible, the end host will

make registrations for propagating reachability of its
local applications.

3.1.1 What Prefix to Propagate
The intention of propagation is to inform the gate-

way router about reachability of producer applications
on end hosts, such that it can be aware of where to for-
ward Interests toward them. The concept is straight-
forward enough, but considering actual implementation
raises several questions, the first being: What prefix
to propagate?

The simplest approach is to propagate local RIB (rout-
ing information base) registraions directly. It works but
is definitely unnecessary and will bother the gateway
router too much. First of all, given local RIB on the
host already records complete reachability information
of local applications, the gateway router need only to
direct Interests to target hosts; it’s unnecessary to keep
such “specific” reachability information at the gateway
router. So prefix aggregation to some degree would be
acceptable. Besides, the RIB on the gateway router
may be dominated by propagations, especially when
there is a large number of hosts or some high-loaded
hosts. What’s worse, per RIB entry propagation will
cause exponentially accumulated affects once the gate-
way router is allowed to further propagate all its RIB
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Figure 2: An example of prefix propagation.

entries. Thus, prefix aggregation is required.
Existing prefix aggregation mechanisms [5, 8] do not

work here, since the aggregation in this case is made ac-
cording to certain local RIB registration (section 3.1.2
discusses how local RIB registraions trigger propaga-
tions) but should cover as many potential registraions
in the future as possible. Such kind of aggregation is
challenging; NDN’s security credential database offers
useful hints, because the same namespace, i.e., the ap-
plication layer namespace, is used for both forwarding
and security. Actually, the namespace defined by a sign-
ing identity covers all prefixes (including other identies
or application names) it can sign (check section 2 for
more detail), which drives us to shift our focus from
RIB entry prefixes to identities in the local key-chain2.

Therefore, the automatic prefix propagation regis-
ters prefix represented by the identity of the key in
the local-keychain, which can sign the given RIB entry,
to the remote gateway for propagation. This identity
can also be used to sign the registration command of
this propagation. If two or more keys exist that sat-
isfy the above requirement, the identity of the shortest
one is selected. Figure 2 shows an example of such key-
chain-involved propagation. Three applications regis-
ter their prefixes, i.e., “/ndn/ucla/alice/app1”, “/ndn/ucla
/alice/app2”and“/ndn/ucla/bob/app3”, with the local NFD.
While there are three identities, say “/ndn/ucla/alice”,
“/ndn/ucla/bob” and “/ndn/ucla/bob/test”, in this host’s
key-chain. On one side, the identity “/ndn/ucla/alice”
covers prefixes of app1 and app2, and it’s the only one,
so, according to oru protocol, it’s selected not only as
the prefix to propagate but also the signing identity of
the remote registration command. On the other hand,
there are two identies, “/ndn/ucla/bob”and“/ndn/ucla/bob
/test”, that covers app3 ’s prefix, so the shorter one,
“/ndn/ucla/bob”, is selected for propagation.

3.1.2 When and How to Propagate
To ensure that the propagation be performed implic-

itly and efficiently, our protocol triggers propagation
automatically as soon as a new entry is inserted into
the local RIB, provided that 1) this entry is neither

2the key-chain owned by the local NFD

confined to local use nor used to represent the connec-
tivity to the remote gateway, 2) the aggregated prefix
(i.e. the identity of the shortest key that can sign this
entry) has not been propagated yet, and 3) there is an
active connectivity to the remote gateway.

More specifically, all entries whose prefix start with
“/localhost” are confined to local use only; they should
not trigger propagations. Due to aggregation, the prop-
agated prefix may represent two or more existing or
potential entries of the local RIB. Accordingly, a new
RIB entry being inserted may share a propagable prefix
with existing entries. In this case, redundant propaga-
tion should be avoided via a careful check of the list of
RIB entries. Lastly, we define a link local nfd prefix
as “/localhop/nfd” to denote the connectivity between
the host and the remote gateway. When a connectivity
between the local NFD and the remote NFD3 is estab-
lished4, an entry with the link local nfd prefix will
be registered to the local RIB. Therefore, the presence
of such an entry is a sign of connectivity to the remote
gateway.

The propagation is performed by sending out the reg-
istration command of the inferred aggregated prefix;
this command is sent out on the face associated to the
RIB entry whose prefix is the link local nfd prefix.
There are three types of entities involved: local applica-
tions, the local NFD, and the remote NFD. Generally,
local applications, which will publish data as produc-
ers, register data prefixes to the local RIB via the local
NFD. Then, the local NFD propagates properly aggre-
gated prefixes and propagate them to the remote NFD
via registration commands. At last, the remote NFD is
responsible to perform those prefix registrations.

3.2 Gateway Router Performs Registrations
Upon receiving remote registraions for propagation,

the gateway router should perform all validated regis-
trations to its local RIB.

3.2.1 Secure Propagations
Upon receiving registration commands from remote

hosts, the gateway should ensure the authenticity and
integrity of these commands. Figure 3 demonstrates the
trust model.

First, each individual registration command must be
signed by the requester with a proper key, while the
receiver holds a trust anchor that directly or recursively
signs the signing key of that command.

On the local host, any key in the local key-chain can
sign propagation commands. Since the prefix to propa-
gate is an existing identity (see section 3.1.1), it’s used
to determine the signing key. In this example, app3 reg-

3the NFD run on the remote gateway
4How to establish such a connectivity is beyond this re-

port ’s scope and can be found elsewhere [2].
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Figure 3: trust model.

isters “/ndn/ucla/bob/test/app3” to the local NFD, which
then triggers the propagation of “/ndn/ucla/bob”. It’s
also selected as the signing identity, whose default key
signs the propagation command.

While on the remote gateway, the NFD is configured
with at least one trust anchor. Later, only those prop-
agations whose signing keys are directly or recursively
signed by trust anchors can be authenticated. Mean-
while, along the signing path from one trust anchor to
the command, all required certificates must be acces-
sible to complete the verification process. In this ex-
ample, “/ndn” is set as the trust anchor on the remote
NFD. It recursively signs “/ndn/ucla/bob” via “/ndn/ucla”.
Given their certificates are all available on DB, the com-
mand to propagate “/ndn/ucla/bob” can be verified via
the trust anchor.

3.2.2 Perform Registrations for Propagation
The propagation actually aims to brining Interests

under the propagated prefix back to the host who makes
this propagation. So, when performing registraions for
the propagation after validating it, the gateway router
will pick up its incoming face as the next hop face for
the propagated prefix. Besides, the route inheritance
flag of the propagation must take the default setting
(i.e., CHILD INHERIT flag takes effect), no matter
which flag is set in the corresponding local RIB entry.
This is because the route registered by propagation will
never be used if the CAPTURE flag is set and some
longer prefixes are present in the remote RIB, which is
possible given the prefix to propagate is always shorter
than actual prefixes due to aggregation.

3.3 Propagation Maintenance
On the gateway router, RIB entries produced by prop-

agations are maintained as soft states, which will expire
after a specified duration; the end host is responsible to

periodically refresh its sent propagations.
While on the end host, all propagated entries are

stored locally (in memory), each of which contains not
only the propagated prefix as well as the signing iden-
tity, but also other useful parameters, such as propa-
gation states (check section 3.3.5 for more detail) and
timers, to assist the end host to retransmit propagations
and to handle failures and status changes as follows.

3.3.1 Handle RIB Status Changes
As mentioned above, a newly inserted entry in the

RIB will trigger propagation of an aggregated prefix.
Whether or not the remote registration of the propa-
gated prefix succeeds, a new propagated entry should be
recorded, even though there is no active connection to
send out registration commands. Meanwhile, we should
withdraw the corresponding propagation when an ex-
isting RIB entry has been erased. If the corresponding
aggregated prefix has not been recorded yet, or there
are other RIB entries covered by the same aggregated
prefix, no action is necessary. Otherwise, the offending
entry in the list should be removed immediately, the
propagation for which should be withdrawn as well.

3.3.2 Handle Failures of Remote Operations
Once there is connectivity to the remote gateway,

propagating a prefix will result in remote registration,
while withdrawing a propagation will result in unregis-
tration.

If a remote registration fails, the same registration
command is re-transmitted according to an exponential
back-off strategy. More specifically, the duration be-
tween two continuous retransmissions is doubled until
it reaches the maximum waiting period. Once a retry
succeeds, the time period of waiting for the next retry
will be set back to the initial value. Both the initial and
maximum waiting periods are configurable.

When a remote unregistration fails, retransmission of
the same command is difficult because the correspond-
ing entry has been erased from the list of propagated
entries. Thankfully, we do not have to perform such
a retransmission because the propagated entry on the
remote gateway will expire without periodic refreshing,
which will have stopped after erasing the entry from the
list.

3.3.3 Handle Connectivity Changes
No matter whether the connection between the end

host and the remote gateway is established, lost, or re-
covered, there are two atomic connectivity changes in-
volved from the view of the host: 1) connects to the
gateway and 2) disconnects from the gateway. The link
local nfd prefix will play the role of an ‘alarm‘ for
those two connectivity changes.

When the link local nfd prefix is inserted into the
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RIB, it means there is a connection that was estab-
lished or recovered. In this case, we should scan the list
of propagated entries to resume all propagations sus-
pended due to the lack of connectivity.

Fittingly, the deletion of the link local nfd prefix
from the RIB signals a loss of current connectivity. In
this case, no remote operations could be launched. Any
attempt to refresh or retry should be abandoned. How-
ever, both propagating a new prefix and withdrawing
an existing propagation will only operate on the list of
propagated entries.

3.3.4 Handle Key-Chain Changes
As mentioned above, the prefix to propagate is de-

termined by the local key-chain owned by the NFD.
Thereby, any changes of the local key-chain may af-
fect the decisions of propagations. For instance, when
the identity of the newly added key is a prefix of some
propagated prefix, that propagation should be replaced
since there is now a better alternative. Similarly, some
propagations should be replaced or withdrawn when an
existing key is erased from the key-chain.

Problematically, monitoring those changes for prop-
agation will closely intertwine the propagator with se-
curity mechanisms, which is bad for the modularity of
the whole system. To this point, our protocol deal with
those changes in a ’lazy’ mode.

For each propagated prefix, the availability and pri-
ority of the corresponding identity in the key-chain is
checked when that propagation is about to be refreshed,
retried or resumed due to connectivity changes. Once
either the availability or the priority of that identity is
broken, (namely, the key under it does not exist or a key
with an identity being its prefix exists) we start looking
for another proper prefix for propagation, leaving the
previous propagation to expire.

3.3.5 State Machine for Each Propagated Entry
All states of a propagated entry on the end host, as

well as transitions between them, can make up a state
machine. Figure 4 shows its core parts5.

A propagated entry consists of the propagated pre-
fix (i.e., the signing identity), an event that could be
scheduled for either refreshing successful propagations
or retrying failed propagations, as well as a Propaga-
tion Status indicating the current state of this entry.
More specifically, a propagated entry will stay in one of
the following five states of logic.

• NEW, the initial state.

• PROPAGATING, the state when the correspond-
ing propagation is being processed but the response

5Invalid transitions, valid transitions without neither
state switch nor associated actions, and the actions asso-
ciated with state switches are not presented.

is not back yet.

• PROPAGATED, the state when the corresponding
propagation has succeeded.

• PROPAGATE FAIL, the state when the correspond-
ing propagation has failed.

• RELEASED, the state when this entry has been
released. It’s noteworthy that this state is not re-
quired to be explicitly implemented, because it can
be easily determined by checking whether an ex-
isting entry can still be accessed. Thus, any entry
to be released is directly erased from the list of
propagated entries.

Given a propagated entry, there are a series of events
that can lead to a transition with a state switch from
one to another, or some triggered actions, or even both
of them. All related input events are listed below.

• rib insert, which occurs when the insertion of an
RIB entry triggers a necessary propagation.

• rib erase, which occurs when the deletion of an
RIB entry triggers a necessary revocation.

• hub connect, which occurs when the connectivity
to a router is established (or recovered).

• hub disconnect, which occurs when the connectiv-
ity to the router is lost.

• propagate succeed, which occurs when the propa-
gation succeeds on the router.

• propagate fail, which occurs when a failure is re-
ported in response to the registration command
for propagation.

• revoke succeed, which occurs when the revocation
of some propagation succeeds on the router.

• revoke fail, which occurs when a failure is reported
in response to the unregistration command for re-
vocation.

• refresh timer, which occurs when the timer sched-
uled to refresh some propagation is fired.

• retry timer, which occurs when the timer sched-
uled to retry some propagation is fired.

4. TYPICAL WORK FLOW AND COOPER-
ATIONS WITH OTHER FUNCTIONS
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Figure 4: Overview of state machine for each propagated entry
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Figure 5: the typical work flow of a propagation

4.1 Work Flow
Figure 5 demonstrates details of the typical work flow

of a propagation6. First of all, this propagation is trig-

6the work flows of withdrawing a propagation and the
cases wehre there is no connectivity to routers or the remote
operation fails at the router are similar but slightly different
and simpler than this one.

gered by a successful RIB insertion (step 0 and 1) on
the end host. Then, after all parameters are ready (step
2) and its necessity is approved (step 3), this propaga-
tion’s registration command is made (step 4) and sent
out (step 5 and 6). On the gateway router, once the
propagation request is received (step 7), the correspond-
ing registration is performed to the RIB (step 10) after
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validation (step 8 and 9). Then, a successful response
is sent back to the end host (step 11). Upon receiv-
ing this response (step 12), a refresh timer is scheduled
(step 13), at whose expiration (step 14) a new request
will be sent out to refresh this propagation on the gate-
way router (step 15).

4.2 Cooperations with other functions
Prefix propagation is to announce the reachability of

local applications, more precisely their producer ends,
to the gateway router within one hop, assisting it to
forward Interests more accurately. Essentially, it’s one-
hop prefix advertisement. Then the gateway router will,
if required and feasible, make further propagations by
readvertising those prefixes to other routers with the
routing protocol, e.g., NLSR [4].

On the other hand, the prefix propagation is the pro-
ducer advertising reachability to the gateway router; the
propagation will not reach potentail consumers. Once
one consumer, especially when it has connectivities to
multiple routers, wants to fetch data, the self-learning
strategy [7] can help it figure out which router can reach
its target producer to avoid broadcasting to all routers.

5. CONCLUSION
In this report , we introduced Automatic Prefix Prop-

agation, which enables the end host to propagate the
reachability of local applications to the gateway router.
In this way, the gateway router can forward Interests to
end hosts more accurately. Meanwhile, locally-registered
prefixes are aggregated for propagation according to the
local security configuration. Propagations are main-
tained as soft states which require periodical refresh to
avoid expiration on the gateway router. On the local
host, propagated entries are maintained according to a
specified state machine, handling propagation failures
and connectivity changes efficiently.
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